

EDES-0002-Rev F.

EmSPARK Suite
CoreLockrTM Libraries User Guide

Date August 31, 2022 | Version 3.4

CONFIDENTIAL AND PROPRIETARY

THIS DOCUMENT IS PROVIDED BY SEQUITUR LABS INC. THIS DOCUMENT, ITS

CONTENTS, AND THE SECURITY SYSTEM DESCRIBED SHALL REMAIN THE

EXCLUSIVE PROPERTY OF SEQUITUR LABS, ARE CONFIDENTIAL AND

PROPRIETARY TO SEQUITUR LABS, AND SHALL NOT BE DISCLOSED TO OTHERS.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

2

 EmSPARK Suite: CoreLockr Libraries User Guide

TABLE OF CONTENTS

CoreLockrTM Libraries User Guide .. 1

1. CoreLockr Libraries .. 5

1.1. Acronyms and Terminology ... 5

1.2. EmSPARK Suite Contents ... 6

1.3. CoreLockr APIs .. 7

1.4. Preinstalled Keys and Certificates in the TEE .. 7

2. CoreLockr Crypto API .. 9

2.1. Key Management .. 9

2.2. Key Store .. 10

2.3. Access to Provisioned Keys .. 10

2.4. Cryptographic operations .. 10

2.5. Opaque Keys .. 11

2.6. Opaque Objects .. 11

2.7. Opaque Keys and Opaque Objects Usage .. 11

2.8. Examples .. 11

2.8.1. Key Management and Provisioned Key Access Example ... 11

2.8.2. Key Store Example ... 12

3. CoreLockr Crypto API – Opaque Keys ... 13

3.1. Creating and Storing Opaque Keys ... 14

3.1.1. Creating Opaque Key Packages .. 14

Saving Opaque Key on Device Key Store .. 15

3.2. Opaque Key Example .. 15

4. CoreLockr Crypto API – Opaque Objects ... 17

4.1. Creating and Decrypting Opaque Objects ... 17

4.2. Opaque Object Example ... 19

4.2.1. Executing the Example ... 19

5. CoreLockr Payload Verification and Key Utilities API ... 21

5.1. Payload Verification Example .. 22

5.1.1. Background .. 22

5.1.2. Executing the Example ... 23

5.2. Key Utilities Example ... 24

5.2.1. Background .. 24

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

3

 EmSPARK Suite: CoreLockr Libraries User Guide

5.2.2. Executing the Example ... 25

6. CoreLockr Crypto OpenSSL Engine API .. 26

6.1. OpenSSL with Crypto in TrustZone for Secure Communication Example .. 27

6.1.1. Background .. 27

6.1.2. Executing the Example ... 27

6.2. OpenSSL with Crypto in TrustZone for Cryptographic Functions Example .. 28

6.2.1. Background .. 28

6.2.2. Executing the Example ... 29

6.3. OpenSSL Using Named Keys Stored in the TEE Example .. 30

6.3.1. ECDSA Key Creation and Storing in the Key Store .. 30

6.3.2. Named Key Use with OpenSSL .. 31

6.3.3. Named Key Deletion from the Key Store .. 32

6.4. OpenSSL Command Line .. 32

7. CoreLockr TLS IO API .. 33

7.1. Communication with a Server Example ... 33

8. CoreLockr Secure Certificates API ... 35

8.1. Provisioned Certificates ... 36

8.2. Certificate Store ... 37

8.3. Certificate Authority Management Example ... 38

8.3.1. Background .. 38

8.3.2. Executing the Example ... 39

8.4. Connecting to AWS IoT Core .. 42

8.4.1. Background .. 42

8.4.2. Linux Development Environment: Prepare Application and Key for Certificate Updates 44

8.4.3. Device: Extract OEM Device Certificate Signing Request ... 44

8.4.4. Linux: Prepare User’s OEM Root Certificate and OEM Device Certificate 44

8.4.5. Board: Customize the Device Certificate and OEM Root Certificate ... 46

8.4.6. AWS Console: Configure User’s Account for AWS TLS Example ... 47

8.4.7. Linux Development Environment: Configure and Build the TLS AWS Example Application 50

8.4.8. Board: Execute the TLS AWS Example Application ... 51

9. CoreLockr Secure Storage API .. 55

9.1. Secure Storage Example ... 55

9.1.1. Background .. 56

9.1.2. Executing the Example ... 56

Appendix A: Supported Cryptographic Operations ... 58

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

4

 EmSPARK Suite: CoreLockr Libraries User Guide

Appendix B: Policy ... 61

Appendix C: Lambda Function ... 62

FIGURES

Figure 1 EmSPARK Architecture ... 6
Figure 2 Opaque Keys .. 14
Figure 3 Opaque Objects .. 18
Figure 4 Provisioned Certificate Management Flow .. 37
Figure 5 Certificate Store Management Flow .. 38

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

5

 EmSPARK Suite: CoreLockr Libraries User Guide

1. CORELOCKR LIBRARIES
This document is an overview of the EmSPARK Security Suite contents, CoreLockr APIs’ capabilities

and included example applications. The EmSPARK Suite enables and makes it easy for customers to

securely store and isolate keys and certificates. TrustZone® with Security Suite separates domains for

security purposes and provides chaining to the provisioned root of trust. The EmSPARK Suite provides the

following advantages:

1. IP protection: unique keys are provisioned or generated on the device ensuring secrets used to protect
the firmware are never exposed.

2. HW/SW security isolation: two operating systems are enabled – TEE (CoreTEE) and Linux (Rich OS)

– and HW security features are segregated in the secure domain (CoreTEE).

The CoreLockr™ APIs are C libraries for development of Client Applications that execute in the Rich OS.

The APIs rely on Trusted Applications (TAs) to execute operations in the TrustZone. EmSPARK™

incorporates a cryptographic engine running in CoreTEE that can be used in Linux through its APIs or via

OpenSSL. In addition, the Suite supplies other C APIs for performing security-specific functions that are

common in IoT applications. The Suite, through HW/SW isolation, allows customers to deploy for end

products:

• IP protection

• Secure communication

• Secure payload verification

• Secure storage

• Keys / Certificates provisioning and storage

• Unique device certificate (unique identity) creation

Devices provisioned with the EmSPARK™ Security Suite are also EmPOWER™ enabled. EmPOWER™ is
a SaaS solution that provides essential cloud services needed to secure, provision, update and manage
devices. During provisioning, keys and certificates that support EmPOWER™ are installed on the device and
as such are part of the suite contents explained in the next section. This document does not explain
EmPOWER™, for information please contact Sequitur Labs.

1.1. Acronyms and Terminology

Certificate
Store

Non-volatile storage of certificates in encrypted form. Managed
using the Secure Certificates API.

Client
Application

An application that runs in the Rich OS and uses the CoreLockr
APIs to access facilities provided by TAs running in the TEE.

CoreTEE™ Sequitur’s Trusted Execution Environment (TEE), or secure OS,
enabled by ARM’s TrustZone™ architecture.

EmPOWERTM SaaS solution that provides cloud services to secure, provision,
update and manage intelligent edge devices.

Key Store Non-volatile storage of keys in encrypted form. Keys within a key
store are addressed by name.

Manifest
(SLIP)

Encrypted component containing customer personalization data
such as keys and certificates. They are installed on device along
with the device firmware.

OOID Opaque Object Identifier, which contains the OOInfo structure
encrypted specifically for a target device.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

6

 EmSPARK Suite: CoreLockr Libraries User Guide

OOInfo Opaque Object Information structure.

Rich OS Rich execution environment such as Linux, which runs outside the
TEE. The Rich OS is considered un-trusted as compared to the
TEE.

STP Sequitur Trusted Package. A package in a custom DER-encoded
format with contents authenticated using a provisioned key.

TA Trusted Application. A TA runs inside the TEE and provides security
related functionality to Client Applications running in the Rich OS or
to other TAs running in the TEE.

TEE Trusted Execution Environment or secure OS, enabled by ARM’s
TrustZone™ architecture.

1.2. EmSPARK Suite Contents

The Suite includes assets for the Rich OS and the Trusted Execution Environment, TEE:

• APIs and Rich OS Assets

▪ CoreLockr APIs (C libraries)

▪ OpenSSL Crypto Engine

▪ Applications and code examples

▪ Linux patches (TEE driver and service provider daemon) to enable CoreTEE functionality

▪ Toolchain and Client API

• CoreTEE, Secure OS required to access TrustZone secured resources

• Trusted Applications (TAs) in the TEE coupled with the CoreLockr APIs in the Rich OS

▪ Crypto Engine TA

▪ Secure Certificates TA

▪ Secure Storage TA

▪ TLS IO TA

The Suite components are illustrated in Figure 1 EmSPARK Architecture. The figure depicts a logical

view of the two worlds on the device, with CoreTEE in the TrustZone and the non-secure Rich OS.

Applications using the CoreLockr APIs in the Rich OS request to execute security functions in the

TrustZone. CoreTEE receives and processes the requests. The security functions are executed in the

TrustZone and the result passed back to the applications in the Rich OS.

Figure 1 EmSPARK Architecture

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

7

 EmSPARK Suite: CoreLockr Libraries User Guide

1.3. CoreLockr APIs

The suite includes the following libraries:

• CoreLockr Crypto API, cryptographic functions and key management in the TEE

• CoreLockr Crypto OpenSSL Engine API, TEE based crypto engine via OpenSSL

• CoreLockr Payload Verification and Key Utilities API, verification of data from a trusted source

and general key utility functions

• CoreLockr TLS IO API, interface of a TLS client running in the TEE with access to keys and

certificates in the TEE

• CoreLockr Secure Certificates API, management of trusted authorities in the TEE, rotation of

selected provisioned keys and certificates

• CoreLockr Secure Storage API, protection of data at rest

1.4. Preinstalled Keys and Certificates in the TEE

During device provisioning, keys and certificates configured in the firmware image are stored in the device

non-volatile memory, in manifests. In a production environment, the OEM would configure the keys and

certificates. The Evaluation Kit firmware image has preconfigured such keys and certificates. The

associated private keys are supplied with the Kit to execute the examples.

Installing on devices the Evaluation Kit firmware provisions keys and certificates that support EmSPARK

and EmPOWER services. For EmSPARK, the keys and certificates illustrate how a customer such as

an OEM can access and manage them through applications developed using the CoreLockr APIs.

Customer designs the usage scenarios. For EmPOWER, the keys and certificates illustrate how they are

used in cloud services. Table 1 and Table 2 list the provisioned keys and certificates stored in non-

volatile memory and managed in the TEE.

Table 1 – Provisioned Keys and Certificates for OEM Usage Scenarios

Cert/Key Name of cert/key exposed by
Security suite

Description

OEM Root Cert CLRSC_OEM_ROOT_CERT Cert containing the OEM Public Key,
customer decides usage.
In the Evaluation Kit, it is predefined and
the associated OEM Root private key is
provided as a file for execution of example
applications that verify the OEM signature.

OEM Public
Key

CLRC_OEM_PUBLIC_KEY Public Key extracted from the OEM cert.
Used for OEM signature verification,
customer decides usage scenarios
including authentication and integrity
checking of Opaque Keys and Opaque
Objects.

OEM Device
Private Key

CLRC_OEM_DEVICE_PRIVATE_KEY Device private key created in device TEE
during provisioning. Unique per device.
Immutable. Customer decides usage
scenarios including decryption of payloads
encrypted for the specific device and for
TLS connection establishment.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

8

 EmSPARK Suite: CoreLockr Libraries User Guide

OEM Device
Public Key

CLRC_OEM_DEVICE_PUBLIC_KEY The pair of the OEM Device Private key.
Customer decides usage scenarios
including generation of encrypted payloads
such as Opaque Keys and Opaque
Objects tailored to the specific device.

OEM Device
Cert

CLRSC_OEM_DEVICE_CERT Cert that can be used for TLS mutual
authentication. Customer decides
additional usage scenarios.

OEM Cloud IoT
Root CA

CLRSC_OEM_CLOUD_CERT Root CA of the Cloud IoT. Customer
decides usage scenarios such as TLS
mutual authentication.

OEM Cloud IoT
Public Key

CLRC_OEM_CLOUD_PUBLIC_KEY Public key extracted from Cloud IoT Root
CA.

OEM Payload
Cert

CLRSC_OEM_PAYLOAD_CERT Cert containing the OEM Payload Public
Key.

OEM Payload
Public Key

CLRC_OEM_PAYLOAD_PUBLIC_KEY Key used to authenticate update payloads
such as firmware update payloads.

OEM Command
Cert

CLRSC_OEM_COMMAND_CERT Cert containing the OEM Command Public
Key.

OEM Command
Public Key

CLRC_OEM_COMMAND_PUBLIC_KEY Key used to authenticate commands that
change trust on the device, such as
commands modifying the Certificate Store
or updating the provisioned certificates.

Table 2 – Provisioned Keys and Certificates for Use with EmPOWER Sevices

Cert/Key Name of cert/key exposed by
Security suite

Description

EmPOWER
Root Cert

CLRSC_EMPOWER_ROOT_CERT Certificate used for EmPOWER cloud
connectivity.

EmPOWER
Public Key

CLRC_EMPOWER_PUBLIC_KEY Public key contained in EmPOWER Root
Certificate.

EmPOWER
Device
Private Key

CLRC_EMPOWER_DEVICE_PRIVATE_KEY Device private key created in device TEE
during provisioning. Unique per device.
Immutable. Used to identify the device with
EmPOWER cloud services.

EmPOWER
Device Public
Key

CLRC_EMPOWER_DEVICE_PUBLIC_KEY The pair of the EmPOWER Device Private
key.

EmPOWER
Device Cert

CLRSC_EMPOWER_DEVICE_CERT Cert used for TLS authentication with
EmPOWER service.

EmPOWER
Cloud Cert

CLRSC_EMPOWER_CLOUD_CERT Used for TLS mutual authentication with
EmPOWER cloud services

EmPOWER
Cloud Public
Key

CLRC_EMPOWER_CLOUD_PUBLIC_KEY Public key extracted from EmPOWER
Cloud Cert.

Applications in the Rich OS using the CoreLockr APIs access these keys and certificates by names

defined in header files of the Crypto API and Secure Certificates API. Please see 2.3 Access to

Provisioned Keys and 8.1 Provisioned Certificates.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

9

 EmSPARK Suite: CoreLockr Libraries User Guide

In the Evaluation Kit, with exception of the OEM Device Key, OEM Device Certificate, EmPOWER Device

Key and EmPOWER Device Certificate which are unique per device, all other keys are the same in all

kits and are not meant to protect secrets but to be used with the examples or for testing.

2. CORELOCKR CRYPTO API
The CoreLockr Cryptographic API and Crypto Engine TA allow easy access to cryptographic functions in

the TEE and provides mechanisms to protect confidential information on a device. This section is an

overview of the API functionality and example applications. For description of the API, please see

CoreLockr_Cryptographic_API.pdf.

The API functionality includes:

• Key management, ephemeral keys and persistent keys managed in the TEE

• Key Store, device specific encrypted key storage

• Access to provisioned keys, access of provisioned credentials protected in the TEE

• Cryptographic operations, cryptographic operations executed in the TEE

• Tools to generate and use Opaque Keys, mechanism to transport keys to a device while protecting their

confidentiality and integrity and store them in the device Key Store

• Tools to generate and use Opaque Objects, off-device encrypted objects for decryption on-device only

when the decryption is enabled with device specific keys

In the Kit, corelockr/corelockr_crypto contains:

• lib, libseqr_corelockr_crypto.so library

• include, header files

• ta, 138A1951-2A00-BF5A-A463E61F402EBE1D.stp associated TA

• Documentation, CoreLockr_Cryptographic_API.pdf describes the API

• README.txt, general API information

• COPYRIGHT, copyright notice

• Example applications

Section 2.8 Examples describes the example applications. See Appendix A: Supported Cryptographic

Operations for list of supported operations.

In the Kit, corelockr/corelockr_opaque_keys contains a script used for creating Opaque Key

packages. Please see the 3 CoreLockr Crypto API – Opaque Keys section.

In the Kit, corelockr/corelockr_opaque_objects contains scripts used for creating Opaque

Objects. Please see the 4 CoreLockr Crypto API – Opaque Objects section.

2.1. Key Management

Supported key types include AES, RSA, ECDSA, ECDH, DH, DSA and HMAC. The API supports

ephemeral keys and persistent keys managed throughout the device life cycle. Ephemeral keys exist in

memory within the loaded TA instance. An ephemeral key disappears when the TA is closed. Persistent

keys are stored in the Key Store, a non-volatile storage of keys in encrypted form. Applications in the

Rich OS reference keys in the TEE via key handles.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

10

 EmSPARK Suite: CoreLockr Libraries User Guide

Capabilities of the CoreLockr Crypto engine to import and use keys in the TEE, and execution of

operations with provisioned keys are illustrated with an example application and code sample.

2.2. Key Store

The Key Store is a non-volatile storage of keys in encrypted form. Each persistent key is stored with a

name used to access and manage the key. Keys can be created in the TEE or imported to the TEE.

Keys can be stored in the Key Store using Opaque Key mechanisms. The visibility the Rich OS has of

the key private attributes is set at the time of key creation or importing.

Keys within the Key Store may be password protected. The same as keys, password objects are stored

in the Key Store and have names. Loading a password object from the Key Store generates a handle.

2.3. Access to Provisioned Keys

The API allows access to provisioned keys such as the keys listed in Table 1 and Table 2. Provisioned

keys are accessed as named keys, the same as keys in the Key Store with no password. The key

names are defined in the corelockr_crypto.h header file.

~/corelockr_crypto/include/corelockr_crypto.h

#define CLRC_OEM_PUBLIC_KEY "com.seqlabs.oem_pub_key"

#define CLRC_OEM_CLOUD_PUBLIC_KEY "com.seqlabs.oem_cloud_pub_key"

#define CLRC_OEM_PAYLOAD_PUBLIC_KEY "com.seqlabs.oem_payload_pub_key"

#define CLRC_OEM_COMMAND_PUBLIC_KEY "com.seqlabs.oem_command_pub_key"

#define CLRC_OEM_DEVICE_PUBLIC_KEY "com.seqlabs.oem_device_pub_key"

#define CLRC_OEM_DEVICE_PRIVATE_KEY "com.seqlabs.oem_device_key"

#define CLRC_EMPOWER_PUBLIC_KEY "com.seqlabs.emp_pub_key"

#define CLRC_EMPOWER_CLOUD_PUBLIC_KEY "com.seqlabs.emp_cloud_pub_key"

#define CLRC_EMPOWER_DEVICE_PUBLIC_KEY "com.seqlabs.emp_device_pub_key"

#define CLRC_EMPOWER_DEVICE_PRIVATE_KEY "com.seqlabs.emp_device_key"

The API function to load a provisioned key returns a key handle. In the case of the OEM Device Private

Key, com.seqlabs.oem_device_key, and EmPOWER Device Private Key,

com.seqlabs.emp_device_pub_key, which are generated during provisioning, applications running

in the Rich OS have no visibility of the keys’ private attributes. To use these private keys, applications

reference them via handles.

2.4. Cryptographic operations

Cryptographic operations are executed in the TEE. Applications in the Rich OS reference operations

via handles. For complete information about the supported API functions, please see

CoreLockr_Cryptographic_API.pdf. Operations include:

▪ Symmetric encrypt/decrypt

▪ Asymmetric encrypt/decrypt

▪ Generate message authentication codes

▪ Sign and verify signatures

▪ Derive shared keys

▪ Generate cryptographic hashes

▪ Random number generation

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

11

 EmSPARK Suite: CoreLockr Libraries User Guide

2.5. Opaque Keys

This is a mechanism to transport keys in signed and encrypted opaque key packages. Device specific

keys are used to encrypt opaque key packages. The Suite provides tools to produce Opaque Key

packages containing keys generated in environments outside the device, and tools to import and store

the keys in the TEE while preventing the Rich OS from accessing the contents of such keys. Section 3

CoreLockr Crypto API – Opaque Keys explains concepts, creation and usage.

2.6. Opaque Objects

Opaque Objects protect applications and IP at rest. Opaque Objects facilitate transferring and storing

encrypted payloads and enable their access for a specific device. There are two sides to the code: the

server side where the Opaque Object is encrypted and its device-specific identifier is created, and the

device side where the object is decrypted. Section 4 CoreLockr Crypto API – Opaque Objects

explains concepts, creation and usage.

2.7. Opaque Keys and Opaque Objects Usage

From the usage schema, the following are differences between Opaque Keys and Opaque Objects:

• Opaque Keys are saved to the persistent Key Store and can be managed and used as any other

key in the Key Store.

• Opaque Objects are encrypted and can be copied to any device. However, to decrypt them, an

Opaque Object Identifier generated for a specific device is required.

• Opaque Object Identifiers produce transient keys that are only used to decrypt the Opaque Object.

2.8. Examples

This section describes the key management and Key Store examples. Please see 3 CoreLockr

Crypto API – Opaque Keys and 4 CoreLockr Crypto API – Opaque Objects for additional

examples.

2.8.1. Key Management and Provisioned Key Access Example
The application uses the CoreLockr Crypto API to execute the following functions:

• Compute a random number

• Import and use keys in the TEE

• Compute an HMAC

• Encrypt and decrypt data using the AES-128-CBC algorithm

• Sign and verify data using ECC keys

• Execute operations with a key preinstalled in the TEE

Software and Data Requirements

• CoreLockr Crypto example application, corelockr/corelockr_crypto/example

• Supplied EC private key file, seq_oem_ca_key.der

• Provisioned EC public key available in the TEE, com.seqlabs.oem_pub_key

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

12

 EmSPARK Suite: CoreLockr Libraries User Guide

The private key associated with the OEM Root Certificate is required for signing payloads that will be

verified in the TEE with the OEM Public Key. The example provides seq_oem_ca_key.der

associated with the OEM Root Certificate com.seqlabs.oem_pub_key preinstalled in the TEE. This

private key file usually not found on the device is provided to make easy the example execution.

Building and Installing
In Linux development environment, change to the corelockr/corelockr_crypto/example

directory and execute make. The compilation creates the clrc_demo executable. Transfer

clrc_demo and seq_oem_ca_key.der to the board to a directory of your preference.

Flow and Code Walkthrough

See corelockr/corelockr_crypto/example/README.txt.

Executing the Example

Application options:

-k [SSL ECC private key file] (required)

-p [Preloaded ECC public key name] (optional). If omitted, the private key file is used for

verification.

Change to the directory where the clrc_demo application and seq_oem_ca_key.der were

transferred.

To sign with the ECC private key file and verify with the ECC public key saved in the TEE, execute:

./clrc_demo –k seq_oem_ca_key.der –p com.seqlabs.oem_pub_key

where com.seqlabs.oem_pub_key is the name of the OEM Public Key saved in the TEE, as

explained in 2.3 Access to Provisioned Keys.

2.8.2. Key Store Example
This example illustrates functionality of the Key Store. Using the Crypto API, the application creates a

key in the TEE and saves it in the Key Store as a named key and with a password. Then, the

application loads the key from the Key Store and uses it for crypto operations. Application functionality:

• Create an ECDSA key: ECC P256

• Use the created key to sign an input string

• Save the key in the Key Store

▪ Set the password object in the Key Store

▪ Save the named key in the Key Store with the associated password object

• Load the named key from the Key Store providing a password

• Use the named key to verify the signature

• Clean up

▪ Delete the named key

▪ Delete the password object from the store

Note that key names are unique in the Key Store. The example deletes the named key and password

object to avoid CLRC_ERROR_EXISTS in subsequent application executions.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

13

 EmSPARK Suite: CoreLockr Libraries User Guide

Software and Data Requirements

CoreLockr Crypto example application,
corelockr/corelockr_crypto/example_key_store_with_password

Building and Installing
In Linux development environment, change to

corelockr/corelockr_crypto/example_key_store_with_password and execute make. The

compilation creates the clrc_key_store_password executable. Transfer the executable file to the

board in a directory of your choosing.

Flow and Code Walkthrough

See corelockr/corelockr_crypto/example_key_store_with_password/README.txt.

Executing the Example
Change to the directory where the clrc_key_store_password application was transferred and

execute it:

./clrc_key_store_password

The application prints messages for different functions and computation results, including:

Creating ECDSA key

Printing out ECDSA key attributes

Signing with the created key

Creating password object "ecc-256-pw" in the store

Saving key in the key store

 Saved named key "ecc-256-key" in the key store,

 with associated password object "ecc-256-pw"

ECDSA verifying using key loaded from the key store

Deleting "ecc-256-key" from the key store

Deleting password object "ecc-256-pw" from the store

3. CORELOCKR CRYPTO API – OPAQUE KEYS
When keys generated outside the device need to be transferred to the device protecting their confidentiality

and integrity, Opaque Keys are the solution. On a device-specific basis, Opaque Keys are made available

to the TEE without allowing the Rich OS to see the key contents. Opaque Keys facilitate scenarios such as

sending license keys to the device for feature enablement, symmetric keys used for confidential data

transfer between devices, and asymmetric key pairs for associated certificates.

The EmSPARK suite provides tools to generate packages containing such keys in environments outside

the device, and tools to import and store the keys in the TEE while preventing the Rich OS from accessing

the contents of the Opaque Keys.

Kit contents

• The CoreLockr Crypto API documentation lists the supported Opaque Key types and algorithms and

describes the clrcSaveOpaqueKeyEx() function that verifies the signature of an encrypted key

package, decrypts and saves the packaged key into the Key Store,
CoreLockr_Cryptographic_API.pdf

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

14

 EmSPARK Suite: CoreLockr Libraries User Guide

In addition, the Suite includes in corelockr/corelockr_opaque_keys:

• A reference implementation script to create Opaque Key packages, code documentation and usage

help, make_opaque_key_package.sh.

• Documentation describing the Opaque Key package structure and approach for encryption and MAC

operations for those who wish to create packages with their own software, see

opaque_key_package_format.txt.

• Instructions and sample key to execute example.

3.1. Creating and Storing Opaque Keys

Opaque Key packages are created in environments outside the device, such as servers. When

transferred to the device, the Opaque Key package can be verified, decrypted and unpacked directly to

the CoreLockr Key Store using the CoreLockr Crypto API. In this section, Figure 2 depicts a high-level

flow of the Opaque Key creation on a server and storage on the device. The next subsections describe

how to create an Opaque Package and how to store the key contained in the Opaque Package into the

Key Store on the device.

Figure 2 Opaque Keys

3.1.1. Creating Opaque Key Packages
The corelockr/corelockr_opaque_keys/make_opaque_key_package.sh script is used to

create Opaque Key packages, as follows:

• The script packages a key into an opaque bundle. The key is either an asymmetric key in DER

format, or a symmetric key in raw binary format.

• The key is combined with additional key information (key type, key name in the persistent storage

and key data) into a DER-encoded SEQUENCE

• The DER-encoded SEQUENCE is encrypted and has its MAC tag computed (in accordance with

the ECIES standard).

• The keys for the encryption and MAC are computed from a device specific ECC public key, an

ephemeral key pair, and a random number.

• The encrypted payload, MAC tag, public component of the ephemeral key pair, random number,

and algorithm IDs are all DER-encoded and concatenated.

• That data is signed, and the signature is prepended to the data within a wrapping SEQUENCE.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

15

 EmSPARK Suite: CoreLockr Libraries User Guide

The script may be used on a server where the required utility programs are available. The script takes

the following inputs:

a. Packaged key, the key to be transferred to the device

▪ Name that will be used to store the packaged key in the device Key Store

▪ Key type

▪ Path of the key file

b. OEM private key for signing the Opaque Key package, the signature will be verified on the device

using the provisioned OEM Public Key

▪ Path of the key file

c. ECDH shared secret derivation key which will be used for decryption on the device, it shall be

device specific such as the OEM Device Public Key file or another ECC public key file already

stored in the device Key Store

▪ Path of the key file

d. Name of the cipher algorithm

e. Name of the MAC algorithm

f. Path to the output Opaque Key package file

The script has complete information of input values.

Saving Opaque Key on Device Key Store
On the device, the CoreLockr Crypto API clrcSaveOpaqueKeyEx() function verifies the signature of

an encrypted key package, decrypts and loads the key contained in the package, and saves the key

into the Key Store under the key name provided when creating the Opaque Key package.

ClrcResult clrcSaveOpaqueKeyEx(const uint8_t *keyPkg,

uint32_t keyPkgLength,

ClrcKeyHandle hDeviceKey,

ClrcPasswordHandle hPassword);

The key package shall be created using make_opaque_key_package.sh, or following the same

process as described in the shell script. For information about clrcSaveOpaqueKeyEx(), please see

CoreLockr_Cryptographic_API.pdf. After the key is stored in the Key Store, applications can

access the key in the same manner as any other key managed in the TEE.

3.2. Opaque Key Example

The example illustrates the sequence from creating an Opaque Key Package using

make_opaque_key_package.sh to storing the Opaque Key in the Key Store as a named key with a

password using the Key Utilities example. It also illustrates the use of the Device Public Key extracted

from the TEE as a file and used as the ECDH shared secret derivation key during the Opaque Key

package creation.

The following sequence includes operations executed off-device and on the device:

• Create Opaque Key package using make_opaque_key_package.sh

• Store Opaque Key in the TEE as a Named Key with a password using clrpv_key_utility

• Print attributes of named key

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

16

 EmSPARK Suite: CoreLockr Libraries User Guide

The example uses the key utilities example provided with the CoreLockr Payload Verification API. For

building instructions see 5.2 Key Utilities.

a. Create Opaque Key package

Opaque Key packages are DER-encoded structures containing key information (key type, key

name in the persistent store, and key data). The key information is encrypted inside the package,

so no key information is accessible until decrypted. The MAC tag for the encrypted information is

also added to the package. The encrypted key information, MAC tag, and the remaining information

required for decryption are hashed and signed to ensure the integrity and verify the source of the

package.

▪ On the device, obtain the device specific key, e.g. Device Public Key. Using

clrpv_key_utility extract Device Public Key com.seqlabs.oem_device_pub_key to a

file

./clrpv_key_utility -E -n "com.seqlabs.oem_device_pub_key" -k

device_pub_key.der

▪ Transfer device_pub_key.der to the development environment to create the Opaque Key

package, ~/corelockr/corelockr_opaque_keys/

▪ The Opaque Key package creation uses the OEM key to sign the package. The sample OEM

key is provided with Crypto API example, located at

corelockr/corelockr_crypto/example/ seq_oem_ca_key.der.

▪ The provided ecdsa256.der is a sample private key file to be transferred to the device

openssl ec -in ecdsa256.der -text -noout -inform DER

▪ Off-device, e.g. in the development environment, create the Opaque Key package from the

example key ecdsa256.der

./make_opaque_key_package.sh -n "opaque.ecdsa256.test1" \

-t KEY_ECDSA_KEYPAIR -K ecdsa256.der \

-S ../corelockr_crypto/example/seq_oem_ca_key.der \

-D device_pub_key.der -c AES_CTR -m HMAC_SHA256 \

-o opaque_key.dat

The -o output Opaque Key package is opaque_key.dat. The other switches represent:

-n name that the packaged key will have in the Key Store opaque.ecdsa256.test

-t type of the key to be packaged as defined in make_opaque_key_package.sh

-K path to the key file to be packaged

-S path of the key file used for signing, the OEM key

-D path to the device-specific ECC public key file, in this case the Device Public Key

b. Transfer the Opaque Key package to the device

▪ Copy opaque_key.dat to the directory where clrpv_key_utility is located.

c. On the device, store the Opaque Key in the Key Store as a named key and with a password, using
clrpv_key_utility

▪ Create a password object

./clrpv_key_utility -S -p "OKMyPW:myokpassword"

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

17

 EmSPARK Suite: CoreLockr Libraries User Guide

▪ Store the Opaque Key in opaque_key.dat with the password (the name of the key is encoded

in the file). The application uses clrcSaveOpaqueKeyEx() to store the Opaque Key into the

Key Store.

./clrpv_key_utility -O -k "opaque_key.dat" –p "OKMyPW:myokpassword"

▪ Print the public attributes of the stored key and confirm they are the same as in ecdsa256.der

./clrpv_key_utility -P -n "opaque.ecdsa256.test1" -p

"OKMyPW:myokpassword"

▪ If desired to execute the example again, delete the password object and the stored named key,

as shown in Key Utilities Example.

4. CORELOCKR CRYPTO API – OPAQUE OBJECTS
Opaque Objects facilitate transferring and storing encrypted payloads that can only be decrypted on a

device-specific basis. Opaque Objects are the solution when objects generated outside the device need to

be transferred and executed on the device protecting their confidentiality and integrity. Opaque Objects

verification and decryption is only possible in the TEE without allowing the Rich OS access to the required

keys.

Kit Contents

The CoreLockr Crypto API documentation describes the Opaque Object Decoding functions and the

supported algorithms, CoreLockr_Cryptographic_API.pdf.

In addition, the Suite includes in corelockr/corelockr_opaque_objects:

• A reference implementation script to create an Opaque Object, make_opaque_object.sh.

• A reference implementation script to generate the Opaque Object Identifier,

make_opaque_object_identifier.sh.

• Documentation of the Opaque Object Identifier package format for those who wish to create Identifiers

with their own software, opaque_object_identifier_package_format.txt.

• Documentation of the cryptographic operations and keys, README.txt.

• Example application.

4.1. Creating and Decrypting Opaque Objects

Opaque Objects consist of two components:

• Opaque Object, the object itself is a data bundle encrypted using a standard AES-256 algorithm. It

is created with an associated Opaque Object Information structure (OOInfo structure).

• Opaque Object Identifier (OOID), which contains the OOInfo structure encrypted specifically for a

target device. The OOID is required to access the decrypted contents of the Opaque Object.

Because the Opaque Object is encrypted, it can be created on a server and installed on any number of

devices. The associated OOInfo structure contains the key for decrypting the object, the type of cipher,

the digest and size of the cleartext data bundle, and various optional usage policies.

The OOInfo structure is itself encrypted into a separate package called the Opaque Object Identifier

(OOID). To give a particular device access to the decrypted contents of the Opaque Object, the OOID

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

18

 EmSPARK Suite: CoreLockr Libraries User Guide

is created on the server, encrypted for a specific device and then transferred to the device. The

encryption of the OOInfo inside the OOID uses a separate key from that used to encrypt the Opaque

Object. On the device, the OOID is used with the Opaque Object to obtain the decrypted data from the

latter.

Encrypted specifically for a target device, the OOID cannot be decrypted on another device. The key to

decrypt the OOID is specified during its creation. The OOID is encrypted using Integrated Encryption

and a public key from the device. When decrypted, the OOID is used to decrypt the Opaque Object.

Figure 3 depicts a high-level flow of the Opaque Object creation on a server and decryption on the

device:

• On a server, the Opaque Object and the Opaque Object Information Structure (OOInfo) are

generated. The Opaque Object may be transferred to a device.

• On the server, the Opaque Object Identifier is generated taking as inputs the Opaque Object

Information Structure, the signing key and the device specific key.

▪ The signing key can be the OEM private key whose signature is verified on the device using the

provisioned OEM Public Key. Alternatively, the signing key can be another key whose public

component is available in the device Key Store to verify the signature. Such key may be

ECDSA, RSA or DSA.

▪ The device specific key can be the OEM Device Public Key file or another ECC public key file

already stored in the device Key Store.

• On the target device where the device specific key is in the TEE, the Crypto API function will require

the Opaque Object and the Opaque Object Identifier in order to decrypt the object. For detail on the

cryptographic operations to create Opaque Objects and OOID, keys, OOInfo structure and OOID

format, please see opaque_object_identifier_package_format.txt and README.txt.

Figure 3 Opaque Objects

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

19

 EmSPARK Suite: CoreLockr Libraries User Guide

4.2. Opaque Object Example

The example creates an Opaque Object of a file (README.txt) and then the associated OOID. The

client application on the device takes these two inputs. The client application simply decrypts the file

contained in the Opaque Object. To illustrate the functionality, the example uses the following scripts

and client application described also in the README.txt file provided with the example:

• Create an Opaque Object, the example uses the make_opaque_object.sh script

• Create a device-specific identifier for the Opaque Object,

make_opaque_object_identifier.sh script

• Then the example uses the client application to decrypt the Opaque Object on the device.

This section provides requirements, building instructions and additional references. The example

requires a sequence of steps starting in Linux development environment, then on the device, again in

Linux environment and finally on the device.

Software and Data Requirements

• CoreLockr Opaque Objects example application, README.txt and scripts,

corelockr/corelockr_opaque_objects

• Payload Verification example application,
corelockr/corelockr_payload_verification/example

• Sample OEM private key, corelockr/corelockr_crypto/example/seq_oem_ca_key.der

• Provisioned Device Public Key, extracted from the TEE on the device

Building
In addition to create the Opaque Objects, this example requires the Payload Verification Key Utilities

example application, described below. In Linux development environment:

a. Build the Payload Verification Key Utilities example application in this directory according to the

instructions in 5.2 Key Utilities and transfer the clrpv_key_utility executable to the board

 corelockr/corelockr_payload_verification/example_key_utility/

b. The example execution will instruct how to build the application and to create the Opaque Object

and Opaque Object Identifier

 corelockr/corelockr_opaque_objects/make_opaque_object_identifier.sh

4.2.1. Executing the Example
Execute the following steps on the device in Linux to extract from the TEE the device public key:

a. Change to the directory where the clrpv_key_utility application was transferred.

b. Execute the following command to extract the OEM Device Public Key:

./clrpv_key_utility -E -n "com.seqlabs.oem_device_pub_key" -k dev-pub.der

Transfer the extracted key to the Linux development environment and place it in this example

directory

~/corelockr/clrc_opaque_objects/example/

Execute the following steps in Linux development environment within the example directory to build

the example application, create the Opaque Object and then generate the OOID.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

20

 EmSPARK Suite: CoreLockr Libraries User Guide

c. Change to:

~/corelockr/clrc_opaque_objects/example/

d. Run “make” to build the clrc_opaque_objects_demo application.

e. Execute the script to create the Opaque Object from the example/README.txt file:

 ../make_opaque_object.sh -i README.txt

A random AES-256 key will be generated, and the default cipher algorithm AES_CTR will be used

for encrypting the Opaque Object. Two outputs are generated:

• The Opaque Object, README.txt.enc

• A configuration file with information necessary for creating the identifier,
README.txt.oocfg

Run ../make_opaque_object.sh -h to view more information about the script.

f. In this example, the creation of the Opaque Object identifier uses the OEM Device Public Key to

encrypt the AES key generated in step e., and the OEM signing key to sign the identifier. The

device public key is acquired as in step b. above. The OEM signing key for the evaluation package

is located at:

corelockr/corelockr_crypto/example/seq_oem_ca_key.der.

Execute the following command to create the Opaque Object identifier (OOID):

../make_opaque_object_identifier.sh -i README.txt.oocfg \

-S ../../corelockr_crypto/example/seq_oem_ca_key.der \

-D dev-pub.der

The identifier will be written to the file README.txt.ooid. The default cipher AES_CTR and digest

HMAC_SHA256 algorithms will be used for that.

Executing the script with the -h option shows help information, the available options and the full lists of

cipher and HMAC algorithms which can be used to create the identifiers.

g. Transfer the clrc_opaque_objects_demo application and README.txt.enc and

README.txt.ooid files to the device. Transfer also the original README.txt, which in this

example is compared the decrypted file to illustrate they are identical.

Execute the following steps on the board in Linux.

h. Change to the directory where the clrc_opaque_objects_demo application and README.txt*

files were transferred to.

i. Execute the following command to decrypt the Opaque Object:

 ./clrc_opaque_objects_demo -k README.txt.ooid -i README.txt.enc \

-o README.txt.dec

 README.txt.dec contains the decrypted output of the Opaque Object.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

21

 EmSPARK Suite: CoreLockr Libraries User Guide

j. Execute the following command to compare the decrypted output with the original file:

 cmp README.txt README.txt.dec

If the files are identical as expected, no output will be generated by the cmp command.

5. CORELOCKR PAYLOAD VERIFICATION AND KEY UTILITIES API
This API has payload verification functions and key utility functions. It is often necessary to know that data

accessed on a remote device is from a trusted source and has not been tampered with. This is usually

accomplished by signing the data with a private key at the source, and then verifying it with the

corresponding public key on the device. The CoreLockr Payload Verification system does exactly that, with

the added security of keeping the public key within a persistent store that prohibits tampering.

The key utilities are not strictly necessary for creating and verifying signed payload packages. However,

they can be useful for testing and provisioning keys on devices. There are utilities for printing out the

contents of loaded keys (useful for debugging) and utilities to save keys loaded in the TEE to a memory

buffer or a file, useful for public keys.

The API functionality includes:

• Payload Verification

▪ Creation of signed payload packages

▪ Verification and decoding of signed payload packages

• General key utility functions

▪ Importing and exporting asymmetric key DER encoded files into the CoreLockr Crypto system

▪ Functions for converting between DER-encoded and CoreLockr Crypto format signatures and

public keys

▪ Printing out the contents of loaded keys for debugging

In the Kit, corelockr/corelockr_payload_verification contains:

• lib, two versions of the library are available: libclrpv.a for building applications for the board, and

libclrpv_x86_64.a for building applications for Linux x86_64 systems (for creating packages)

• include, header files

• docs, library documentation

• bin, a shell script that uses OpenSSL for creating payload packages in case the API library is

unavailable in the system

• payload_package_format.txt, description of the encoded package format for those who wish to

create package files with their own software

• README.txt, general API information

• COPYRIGHT, copyright notice

• example, application with source code

• example_key_utility, application with source code

Sections 5.1 Payload Verification Example and 5.2 Key Utilities Example describe the example

applications.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

22

 EmSPARK Suite: CoreLockr Libraries User Guide

5.1. Payload Verification Example

The API facilitates creation of signed payload packages and verification and decoding of signed

payload packages. Packages created at the source contain the payload data, signature and hash

identifier, all encoded together in DER format.

5.1.1. Background
The example application illustrates the ability of the EmSPARK Suite to verify data using a key

preinstalled in the TEE. The application uses the CoreLockr Payload Verification API which provides

functions for creating and verifying signed payload packages. The API supports ECC, RSA, DSA and

DH keys and multiple hashing algorithms. The Example Application Execution has two phases:

• Creation of a signed payload package

▪ Creation of payload in a system external to the board. The Kit provides a shell script that

uses OpenSSL for creating payload packages,

corelockr_payload_verification/bin/make_payload_package.sh. The script

signs the digest of a payload file and DER encodes it.

▪ Creation of payload on the board. To simplify the example set up and avoid the

configuration of an external system for creating signed packages, the application that

executes on the board can be used for both creating a signed package and then for verifying

it. The application creates a signed payload package using the OpenSSL crypto library.

• Verification of a signed payload package

▪ Using the underlying CoreLockr Crypto, the example application executing on the board

verifies the signed packages

For simplicity, the example code requires the use of ECC keys and forces the use of the SHA1 hash.

The application permits the execution of the following scenarios:

• Successful verification of a payload package signed with an authorized key

• Failed verification of a payload package signed with an unauthorized key

• Encoding of a package (optional)

Software and Data Requirements

• Payload Verification example application,
corelockr/corelockr_payload_verification/example

• OEM Payload Private Key associated with the OEM Payload Certificate flashed on the device, used

for signing the payload packages. The example provides seq_payload_ca.key in PEM format

and seq_payload_ca_key.der in DER format (ECC P256) which are associated with OEM

Payload Public Key provisioned on the device to verify payloads, see Table 1 – Provisioned Keys

and Certificates for OEM Usage Scenarios

• OEM Payload Public Key to verify signed packages. This key is already saved in the TEE and can

be accessed by name: com.seqlabs.oem_payload_pub_key

• Script to create payload packages,
corelockr_payload_verification/bin/make_payload_package.sh

• Payload files, which need to be available on the board before executing the application

Building and Installing
Change to the corelockr/corelockr_payload_verification/example directory. Execute

make to build clrpv_demo. Transfer the executable along with payload sample file to the board.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

23

 EmSPARK Suite: CoreLockr Libraries User Guide

5.1.2. Executing the Example
On the device, change to the directory where clrpv_demo is located to execute the application

commands in the Linux command line.

Create a Signed Payload Package in a System External to the Board

To create a signed package in an external system using the make_payload_package.sh script in

corelockr_payload_verification/bin, identify:

• Path of the private key used for signing, in PEM format. In this example, the provided

seq_payload_ca.key in PEM format is associated with the OEM Payload Certificate

• Path of the payload file, test-payload is provided with the example application

• Path and name to the output package file

• Hashing algorithm, md5, sha1, sha224, sha256, sha384, sha512

Execute the script in the system where the payload file will be generated, e.g.

./make_payload_package.sh -k seq_payload_ca.key -d sha1 -p test-payload -o

signed-on-server-payload

where –k precedes the key file name, -d the hashing algorithm, -p the name of the payload to be

signed and –o the name of the signed payload, which in the example is signed-on-server-

payload. Transfer the signed packages to the board.

Create a Signed Package on the Board

To simplify the Example Application Execution, the application on the board can create a signed

payload package using the OpenSSL crypto library. The creation of a signed package requires:

• Path of the private key, in PEM or DER format, used for signing

• Path of the payload file

• Path to the output package file

• Hashing algorithm, the example application uses SHA1

To create a package, make sure you have a sample payload file (test-payload is provided) to be

signed, and execute:

./clrpv_demo –E –p test-payload –k seq_payload_ca.key –s encoded-pkg

where “-E” indicates the application option to encode the payload file name test-payload (this can

be replaced by another existing payload file name), “-k” is the private key

seq_payload_ca_key.der, and “-s” precedes the signed payload package file name to be created,

encoded-pkg.

If the encoding is successful, the output below is printed and encoded-pkg is created:

Package creation returned 0 (0x00000000)

Verify a Package, Successful Verification Scenarios

The Payload Verification API has functions for decoding a signed package, extracting the payload and

writing an output file. For package verification the Payload Verification API requires:

▪ Signed package path

▪ DER format key

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

24

 EmSPARK Suite: CoreLockr Libraries User Guide

The example application can verify packages using either a public key preinstalled in the TEE or a key

file in DER format. To verify packages using the preloaded key in the TEE execute:

./clrpv_demo –V –k com.seqlabs.oem_payload_pub_key –s signed-on-server-

payload –p new-payload

./clrpv_demo –V –k com.seqlabs.oem_payload_pub_key –s encoded-pkg –p new-

payload2

where “-V” tells the application to verify the encoded package signed-on-server-payload or

encoded-pkg and “-p” to extract the payload in a new payload file new-payload or new-

payload2. “-k” precedes com.seqlabs.oem_payload_pub_key, the name of the OEM Payload

Public Key managed in the TEE.

In this case the verification succeeds because both packages were signed with the private key

corresponding to the public DER key saved in the TEE and used for verification (and the packages

have not been tampered with). The following output is printed on the console and new-payload file is

created:

Verification returned 0 (0x00000000)

The standard command-line tool “diff” can be used to test that the extracted new-payload and

new-payload2 files are identical to the original test-payload file.

Verify a Package, Verification Failure Scenarios
When there is a mismatch between the signed package and the key used for signing, the verification

fails and the corresponding error is printed on the console. For example, attempts to verify a package

whose signature or contents have been altered return errors. For description of the encoded package

format see payload_package_format.txt.

Note that error codes can be returned from the Payload Verification API, from the underlying CoreLockr

Crypto API calls, as well as the usual errno return codes from system calls. See the API

documentation for list of return codes.

5.2. Key Utilities Example

Key utilities include functions for converting between DER-encoded and CoreLockr Crypto format keys

and signatures.

5.2.1. Background
The example application uses the CoreLockr Payload Verification API and the CoreLockr Crypto API to

illustrate a variety of scenarios, including the following for key store and Opaque Keys:

• Store a password object with password

• Store a private key associated with the stored password

• Print the attributes of the stored key

• Extract the components of the stored key

• List the name of the password required by the stored key

• List the names of the keys using the stored password

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

25

 EmSPARK Suite: CoreLockr Libraries User Guide

• Delete the stored key

• Delete the stored password object

• Extract from the TEE the public key of a provisioned key such as the OEM Device Public Key

• Store an Opaque Key in an Opaque Key package with a password

Note: the scenario that stores an Opaque Key to the key store requires that an Opaque Key package

be created and transferred to the device. Please see the 3 CoreLockr Crypto API – Opaque Keys

section.

Software and Data Requirements

~/corelockr/corelockr_payload_verification/example_key_utility example source

files and sample key

Building and Installing
Change to the ~/corelockr_payload_verification/example_key_utility directory.

Execute make to build clrpv_key_utility. Transfer the executable along with payload sample files

to the board.

5.2.2. Executing the Example
On the board, change to the directory where clrpv_key_utility and sample key are located to

execute the application commands in the Linux command line.

The application README.txt and the binary provide information of the switches and input data required

for its execution.

Key Utilities Example
Store a password object named “MyPW” with password “mypassword”

./clrpv_key_utility –S –p "MyPW:mypassword"

Store a DER-encoded ECDSA private key in the file “ecdsa.der” under the name “MyEcdsaKey” and

using the stored password

./clrpv_key_utility –S –n "MyEcdsaKey" –t KEY_ECDSA_KEYPAIR –k ecdsa.der –p

"MyPW:mypassword"

Print the public attributes of the stored key

./clrpv_key_utility –P –n "MyEcdsaKey" –p "MyPW:mypassword"

Extract the public components of the stored key

./clrpv_key_utility –E –n "MyEcdsaKey" –p "MyPW:mypassword" –k ecdsa-pub.der

List the name of the password required by the stored key

./clrpv_key_utility –L –n "MyEcdsaKey"

List the names of the keys using the stored password

./clrpv_key_utility –L –p "MyPW:mypassword"

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

26

 EmSPARK Suite: CoreLockr Libraries User Guide

Delete the stored key

./clrpv_key_utility –D –n "MyEcdsaKey" –p "MyPW:mypassword"

Delete the stored password object

./clrpv_key_utility –D –p "MyPW:mypassword"

Extract from the TEE the public key of a provisioned key such as the OEM Device Public Key

./clrpv_key_utility -E -n "com.seqlabs.oem_device_pub_key" -k

device_pub_key.der

Opaque Key Example
Store Opaque Key in the TEE as a named key and a password using clrpv_key_utility. For

information to execute this option, see Opaque Key Example in 3 CoreLockr Crypto API – Opaque

Keys.

6. CORELOCKR CRYPTO OPENSSL ENGINE API
The EmSPARK Suite supports the use of the TEE based crypto engine via OpenSSL. The CoreLockr

Crypto OpenSSL Engine executes cryptographic operations in the TEE using underneath the CoreLockr

Crypto API. The CoreLockr Crypto OpenSSL Engine API has functions that allow:

• Loading the Engine

• Setting the Engine behavior

• Configuring the Engine’s capabilities

After the Engine is loaded, OpenSSL EVP libraries can automatically use it for calculations in applications.

Some functionality is available when loading the engine on the OpenSSL command line.

In the Kit, corelockr/corelockr_ssl contains:

• lib, libclrc_util.a library

• include, header files

• ssl_engine, the libclrc.so OpenSSL engine

• docs, for library documentation see ~/docs/html/index

• README.txt, general API information

• COPYRIGHT, copyright notice

• Example applications

In this document 6.1 OpenSSL with Crypto in TrustZone for Secure Communication describes an

example of a server and a client establishing a TLS/SSL connection, 6.2 OpenSSL with Crypto in

TrustZone for Cryptographic Functions describes an application that loads the Engine to execute

cryptographic operations called from the OpenSSL EVP libraries, and 6.3 OpenSSL Using Named Keys

Stored in the TEE illustrates how to load keys stored in the Key Store into OpenSSL. This tutorial includes

examples of OpenSSL command-line commands in 6.4 OpenSSL Command Line.

The Engine supports the algorithms supported by the Crypto API. Note that DES algorithms may not be

enabled in OpenSSL.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

27

 EmSPARK Suite: CoreLockr Libraries User Guide

6.1. OpenSSL with Crypto in TrustZone for Secure Communication Example

This example consists of a server and a client establishing a TLS/SSL connection.

6.1.1. Background
For simplicity of setting up the example and avoiding the configuration of a server in a different system,

both client and server run on the device. The CoreLockr Crypto OpenSSL Engine API is used to load

the engine in the client application and make it the default for doing crypto operations within the TLS

stack. The client connects to the server and, after the handshake completes, sends and receives a brief

text message. The example includes code to build the server.

Software and Data Requirements

• Client application, corelockr/corelockr_ssl/example/client

• Server application, corelockr/corelockr_ssl/example/server

• Client and server certificates, corelockr/corelockr_ssl/example/client/certs and

corelockr/corelockr_ssl/example/server/certs

Building and Installing
Change to corelockr/corelockr_ssl/example/ directory and execute make to build the client

and the server application executables. Client and server are preconfigured to run on the board and

read their certificates from a known location.

Transfer the client to the board:

• executable, client/clrc_ssl_demo_client

• configuration file, client/demo_client.conf

• certificates, consisting of client private key (EC P-256) and CA certificates, client/certs/*

Also transfer the server to the board:

• executable, server/clrc_ssl_demo_server

• configuration file, server/demo_server.conf

• certificates consisting of the server private key and CA certificates, server/certs/*

See corelockr_ssl/example/README.txt for additional information.

6.1.2. Executing the Example

Start the Server
On the board, change to the directory where the clrc_ssl_demo_server application was transferred

to and execute:

./clrc_ssl_demo_server

The server program is listening at the configured port for the client to connect to it.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

28

 EmSPARK Suite: CoreLockr Libraries User Guide

Start the Client
On the board, in another shell, execute the following command to start the client:

./clrc_ssl_demo_client

The client application prints messages such as

CoreLockr Cipher Probe started

Starting SSL test

The client application may be executed with the “-p” print option which prints the available TLS suites

and engine ciphers i.e. clrc cipher list.

See the Client / Server communication output.

Eventually the client application prints to the console:

Got chat response: Hi from server!

The server application prints to the console:

Got chat: Hi from client!

Sent chat: Hi from server!

Ssl_read: SSL_ERROR_ZERO_RETURN

The last message is not an error; it means that the connection was closed.

The server code does not use the CoreLockr Crypto OpenSSL Engine in this demonstration. The client

code does use the engine under the hood. For flow and code walkthrough, see

corelockr_ssl/example/README.txt.

6.2. OpenSSL with Crypto in TrustZone for Cryptographic Functions Example

The CoreLockr Crypto OpenSSL Engine (clrc) can be loaded in OpenSSL to perform cryptographic

operations in the TEE:

• In applications using the OpenSSL EVP API

• In the OpenSSL command line utility

The example application loads the Engine and executes cryptographic operations using the OpenSSL

EVP libraries. 6.4 OpenSSL Command Line presents examples of loading the Engine in the

OpenSSL command line using the “-engine” switch.

6.2.1. Background
This example uses the OpenSSL EVP API. The application loads the clrc engine and uses it to

perform cryptographic operations using the EVP cipher routines. The example illustrates how to load

the clrc engine. The application executes sample operations such as random number generation,

computation of message digests, symmetric encryption and decryption and CMAC computations.

Software and Data Requirements
CoreLockr EVP example application, corelockr/corelockr_ssl/example_evp

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

29

 EmSPARK Suite: CoreLockr Libraries User Guide

Building and Installing
Change to ~/corelockr_ssl/example_evp and execute make to build the executable

clrc_evp_sample. Transfer clrc_evp_sample to the board. For additional instructions for building

and executing the application, and explanation on flow and code walkthrough to load the engine please

see corelockr_ssl/example_evp/README.txt.

6.2.2. Executing the Example
Change to the directory where the application binary was copied and execute it:

./clrc_evp_sample

The application prints to the console the computed results of crypto operations such as:

RNG

Message digests: SHA256

Encrypt: AES-256-CTR

Decrypt: AES-256-CTR

CMAC-AES-128-CBC

Load Engine Code Walkthrough

When the application starts and before executing cryptographic operations, the application calls the

clrcLoadEngine() function of the CoreLockr Crypto OpenSSL Engine API to load the CoreLockr

Crypto OpenSSL Engine. The engine code is implemented as a shared library named libclrc.so.

This file must be dynamically loaded by the OpenSSL library before it can be used. This sample

function accomplishes that:

int load_engine() {

int ret = 0, hide_private = 0;

extern evp_test_params params;

ret = clrcLoadEngine(params.dyn_lib, ENGINE_METHOD_ALL, hide_private);

return (ret == 1) ? 0 : -1;

}

Detailed load_engine() function overview:

• int ret = 0, hide_private = 0;

The OpenSSL engine control API provides a way to pass information to an engine that cannot be

passed via the EVP interface. In the case of the CoreLockr Crypto OpenSSL engine, one command

is currently available: the HIDE_PRIVATE command. It is used for setting a flag in the engine code

that determines whether the private values of keys will be exposed outside of the engine. Setting

the flag to a non-zero value has two effects:

▪ OpenSSL key structures do not contain the private values

▪ Any new key added to the underlying CoreLockr Crypto system has the

CLRC_ATTR_EXPORT_AS_PLAIN attribute disabled so that the private values cannot be

read using the attribute fetching functions.

• extern evp_test_params params;

The libclrc.so library is defined as a parameter to be used in the EVP test, e.g.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

30

 EmSPARK Suite: CoreLockr Libraries User Guide

evp_test_params params = {

 .dyn_lib = "./libclrc.so",

};

• ret = clrcLoadEngine(params.dyn_lib, ENGINE_METHOD_ALL, hide_private);

The clrcLoadEngine() function loads the engine and sets the default behavior, where:

▪ params.dyn_lib is the full path to the libclrc.so engine

▪ ENGINE_METHOD_ALL indicates the engine methods to be enabled

▪ hide_private is a flag for disabling access to keys’ private values

Returns 1 on success, or 0 on error and the OpenSSL error stack is updated.

On success, the CoreLockr Crypto OpenSSL engine shared library is loaded, the specified

engine methods are registered, and the flag for hiding private values in keys is set.

From this point, the EVP functions set up the context with the CoreLockr Crypto OpenSSL

engine.

6.3. OpenSSL Using Named Keys Stored in the TEE Example

The CoreLockr Crypto OpenSSL Engine (clrc) enables applications using the OpenSSL EVP libraries

to access named keys saved in the Key Store in the TEE. This example consists of three

interdependent applications whose functions are:

• Create and store an ECDSA key in the Key Store, using the Crypto API for key store management.

Save the key under the name ECC-256-KEY in the key store.

• Load a named key from the Key Store into OpenSSL, using the EVP libraries for crypto operations

with the key. The application loads ECC-256-KEY from the Key Store.

• Delete a named key from the Key Store using the Crypto API. The application deletes ECC-256-

KEY from the Key Store.

6.3.1. ECDSA Key Creation and Storing in the Key Store
This application illustrates how to create a key and save it in the store as a named key that other

applications can use. The application uses the CoreLockr Crypto API to create an ECDSA key and

store it in the Key Store with no password and named as ECC-256-KEY. The 6.3.2 Named Key Use

with OpenSSL example uses the ECC-256-KEY key from the Key Store.

For CoreLockr Crypto API documentation, please see
corelockr/corelockr_crypto/CoreLockr_Cryptographic_API.pdf

Software and Data Requirements

• Store named key example,
corelockr/corelockr_ssl/example_key_store_with_openssl/store_named_key

Building and Installing
In Linux, change to the

~/corelockr_ssl/example_key_store_with_openssl/store_named_key directory and

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

31

 EmSPARK Suite: CoreLockr Libraries User Guide

execute make. The compilation creates the clrc_store_named_key executable. Transfer

clrc_store_named_key to the board in a directory of your choosing.

Executing the Example

Change to the directory where the application binary was copied and execute:

 ./clrc_store_named_key

The application prints the created key attributes and result of storing the key in the key store, e.g.:

Creating ECDSA key:

 Printing out ECDSA key attributes

Saving the named key in the key store:

 Successfully saved ECC-256-KEY key in the key store, without password

Note that if the ECC-256-KEY name already exists in the Key Store, the application exits with an error.

In such a case, to delete the key name from the key store, execute the clrc_delete_named_key

application explained in 6.3.3 Named Key Deletion from the Key Store.

Flow and Code Walkthrough

For information see
~/corelockr_ssl/example_key_store_with_openssl/store_named_key/README.txt

6.3.2. Named Key Use with OpenSSL
OpenSSL can use keys stored in the TEE. This application illustrates how to load a named key from the

Key Store into OpenSSL. The application uses the CoreLockr OpenSSL engine API to load the “clrc”

OpenSSL engine and uses the OpenSSL EVP libraries to execute the following functions:

• Load ECC-256-KEY, an ECDSA key previously stored in the TEE, into an EVP_PKEY via the

engine

• Use the ECDSA private key for signing data

• Use the ECDSA public key for verifying the signature

Software and Data Requirements
~/corelockr_ssl/example_key_store_with_openssl/clrc_use_named_key

Building and Installing
Change to corelockr_ssl/example_key_store_with_openssl/clrc_use_named_key/

directory and execute make to build the application binary, clrc_use_named_key. Transfer

clrc_use_named_key to the board.

Executing the Example

The application loads ECC-256-KEY from the key store to execute cryptographic operations. To save

the key in the key store, previously execute clrc_store_named_key, explained in 6.3.1. Change to

the directory where the binary was transferred and execute it:

 ./clrc_use_named_key

When the named key exists, the application prints messages:

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

32

 EmSPARK Suite: CoreLockr Libraries User Guide

Load CoreLockr Cryptographic Engine

Successfully loaded private key: ECC-256-KEY

Computed signature using loaded private key

Successfully loaded public key: ECC-256-KEY

Successful signature verification

Flow and Code Walkthrough

For information see
~/corelockr_ssl/example_key_store_with_openssl/clrc_use_named_key/README.txt

6.3.3. Named Key Deletion from the Key Store
This application deletes the ECC-256-KEY key from the key store. The application uses the CoreLockr

Crypto API to delete the key. If the key name exists, the application deletes it, otherwise it prints an

error message.

For CoreLockr Crypto API documentation, please see
corelockr/corelockr_crypto/CoreLockr_Cryptographic_API.pdf

Software and Data Requirements

• Delete named key example,
corelockr/corelockr_ssl/example_key_store_with_openssl/ delete_named_key

Building and Installing
In Linux, change to the corelockr/corelockr_ssl/example_key_store_with_openssl/

delete_named_key directory and execute make. The compilation creates the

clrc_delete_named_key executable. Transfer clrc_delete_named_key to the board in a

directory of your choosing.

Executing the Example

Change to the directory where the application binary was copied and execute:

 ./clrc_delete_named_key

The application prints the result of deleting the key from persistent storage, e.g.

ECC-256-KEY key has been deleted from the key store

Flow and Code Walkthrough

See ~/corelockr_ssl/example_key_store_with_openssl/ delete_named_key

6.4. OpenSSL Command Line

The CoreLockr Crypto OpenSSL Engine can be loaded on the OpenSSL command-line utility to

execute some operations. If libclrc.so is stored within the default location (e.g. /usr/lib/arm-

linux-gnueabihf/openssl-1.0.0/engines/ on Ubuntu ARM systems), then it can be loaded by

the OpenSSL utility using the “-engine clrc” option, for example, secure hashing:

echo Sample | openssl sha256 –engine clrc

The OpenSSL command line cannot use key tokens and therefore is unable to access keys stored in the

TEE.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

33

 EmSPARK Suite: CoreLockr Libraries User Guide

7. CORELOCKR TLS IO API
The Transport Layer Security (TLS) protocol is used to provide secure communication over the internet. It

is designed to protect the secrecy and integrity of the communication from external factors. The CoreLockr

TLS IO API is the Rich OS interface to an implementation of TLS client code that runs within the TEE.

Running the TLS code within the TEE provides some security from snooping and tampering on the device

itself.

The CoreLockr TLS IO provides access to named keys and certificates that exist within the CoreLockr

secure storage system, such as provisioned keys and certificates, Key Store and Certificate Store. It also

provides access to cryptographic operations within the CoreLockr Crypto system in the TEE. The

CoreLockr Secure Certificates system is used to verify the peer’s certificates during the mutual

authentication step when the TLS communication is being established.

Kit Contents
In the Kit, corelockr/corelockr_tlsio contains:

• lib, libseqr_corelockr_tlsio.so library

• include, header file

• ta, A37F954E-303F-6D5D-B81685157929ADA2.stp associated TA

• docs, for library documentation see ~/docs/html/index

• README.txt, general API information

• COPYRIGHT, copyright notice

• Example application

7.1. Communication with a Server Example

The example uses the CoreLockr TLS IO API in the client application to communicate with an

OpenSSL-based server. The client connects to the server and, after the handshake completes, sends

and receives a brief text message.

There are two mutual authentication scenarios demonstrated in this example:

1) The client uses the provisioned device key and certificate,

2) The client uses an externally created key and certificate.

In the first scenario, the device key and certificate are specified using the names under which they are

stored in secure storage. The key contents are not exposed to the Rich OS. In the second scenario, the

key and certificate are provided as PEM-format files from the Rich OS. In both cases, the TLS

encryption takes place within the CoreLockr TLS IO Trusted Application, and all of the secrets

associated with that are kept in the TEE.

The server program is the same as is used in 6.1 OpenSSL with Crypto in TrustZone for Secure

Communication example. However, different configuration files and certificates/keys are provided for

the two scenarios in this example. For scenario 1, the server requires the OEM root certificate for

verifying the device’s certificate. Its own certificate was signed with the same CA, so the device verifies

it with the provisioned OEM Root Certificate. For scenario 2, the server and device certificates were

signed with the same external CA, and both sides require the ca-ext.crt certificate to verify each

other’s certificate.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

34

 EmSPARK Suite: CoreLockr Libraries User Guide

Building and Installing

• Run “make” within the example directory to build the client/clr_tls_demo_client and

server/clrc_ssl_demo_server applications

• Transfer the client/clr_tls_demo_client, client/demo_client.conf.prov,

client/demo_client.conf.ext, server/clrc_ssl_demo_server,

server/demo_server.conf.prov and server/demo_server.conf.ext files to the board in

a directory of your choosing. Transfer the private EC client and server keys, and the client, server

and CA certificates to a certs/ directory in that same location.

Flow and Code Walkthrough
For information see ~/corelockr_tlsio/example/README.txt.

Executing the Example
These steps must be performed on the board in Linux.

• Change to the directory where the example applications were transferred to.

• If the Trusted Application was built to use the CoreLockr Secure Certificates API for verification,

then the certs/ca-ex.crt certificate must be added to the Certificate Store on the device for

scenario 2 to work properly. The clrsc_example application from the corelockr_cert example

can be used to add the certificate. Build that example if necessary, and then run the following

command

 <path-to-example-application>/clrsc_example a certs/ca-ext.crt

The CA certificate for scenario 1 was provisioned on the board, so adding it to the secure certificate

store is not necessary.

• Execute the following command to start the demo server for scenario 1:

 ./clrc_ssl_demo_server –f demo_server.conf.prov

 or for scenario 2:

 ./clrc_ssl_demo_server –f demo_server.conf.ext

The server program is listening at the configured port for the client to connect to it. The server is

configured to use different ports for the two scenarios, so both instances can be left running at the

same time.

• In another shell, execute the following command to start the demo client for scenario 1:

./clr_tls_demo_client –o demo_client.conf.prov

or for scenario 2:

./clr_tls_demo_client –o demo_client.conf.ext

The client application should eventually print:

"Got chat response: Hi from server!"

The server application should print:

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

35

 EmSPARK Suite: CoreLockr Libraries User Guide

"Got chat: Hi from client!

 Sent chat: Hi from server!

 Ssl_read: SSL_ERROR_ZERO_RETURN"

The last message is not an error; it means that the connection was closed.

8. CORELOCKR SECURE CERTIFICATES API
The CoreLockr Secure Certificates library and accompanying Trusted Application (TA) leverage the

capabilities of CoreTEE™ to provide secure storage and management of X.509 v3 Certificate Authority

certificates (CAs). This section provides an overview of the API functionality and example applications. The

CoreLockr TLS IO API uses the CoreLockr Secure Certificates system to verify the peer's certificates

during the mutual authentication step when the TLS communication is being established. The API has

functionality to:

• Verify certificates against known Certificate Authorities stored in the Certificate Store and provisioned

certificates

• Manage Certificate Authority certificates: add, update and delete CA certificates stored in the Certificate

Store in the TEE

• Manage a Certificate Revocation List, CRL

• Manage the signing key of certificate management commands

• Enable rotation of certificates provisioned on the device

• Extract from the TEE the provisioned certificates

• Extract from the TEE the Device Certificate Signing Request (CSR) generated during provisioning

Management commands modifying the Certificate Store or the provisioned certificates must be signed with

an authorized key, this way the OEM has ownership of the certificates managed in the TEE. The

authorized signing key is the OEM Command Key. Such commands are generated on a secure server and

sent to the device for verification and execution.

On the device, the Secure Certificates API verifies the signature before executing such commands. On the

device, the API verifies the signature using the OEM Command Public Key

(CLRC_OEM_COMMAND_PUBLIC_KEY) contained in the OEM Command Certificate in the TEE

(CLRSC_OEM_COMMAND_CERT). Please see Table 1 – Provisioned Keys and Certificates for OEM

Usage Scenarios.

Note that commands to verify certificates against known CAs in the TEE do not need to be signed.

There are two classes of certificates in the CoreLockr Secure Certificates API:

• Provisioned certificates, these certificates are provisioned in non-volatile memory when the device

firmware is installed. These certificates can be accessed and managed through the device lifecycle

using proper verifications

• Certificate Store, these certificates exist entirely within the TEE's persistent object store. The Certificate

Store includes Certificate Authorities managed during runtime using the Secure Certificates API. It also

includes the certificate revocation list.

The two classes are managed differently within the API. The sections below explain the differences.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

36

 EmSPARK Suite: CoreLockr Libraries User Guide

Kit Contents
In the Kit, corelockr/corelockr_cert contains:

• docs, library documentation

• lib, libseqr_corelockr_cert.so library

• include, header files

• ta, 222A521C-62CB-0653-BCE5DD727660FAF0.stp associated TA

• README.txt, general API information

• COPYRIGHT, copyright notice

• examples, example application with source code, explained in 8.1

• README_named_certificates.txt, description of STP structure and STP file creation to update

provisioned certificates

• ~/bin/make_named_cert_stp.sh, reference script to generate STP files for updating provisioned

certificates

In corelockr/examples/AWS is an example application explained in 8.4 Connecting to AWS IoT Core.

8.1. Provisioned Certificates

These certificates are provisioned in non-volatile memory when the device firmware is installed. The

Secure Certificates API allows access to these certificates by a name defined in the

clrsc_ta_commands.h header file, i.e.

~/corelockr_cert/include/clrsc_ta_commands.h

#define CLRSC_OEM_CLOUD_CERT "com.seqlabs.oem_cloud_cert"

#define CLRSC_OEM_ROOT_CERT "com.seqlabs.oem_root_cert"

#define CLRSC_OEM_PAYLOAD_CERT "com.seqlabs.oem_payload_cert"

#define CLRSC_OEM_COMMAND_CERT "com.seqlabs.oem_command_cert"

#define CLRSC_OEM_DEVICE_CERT "com.seqlabs.oem_device_cert"

#define CLRSC_OEM_DEVICE_CSR "com.seqlabs.oem_device_csr"

#define CLRSC_EMPOWER_CLOUD_CERT "com.seqlabs.emp_cloud_cert"

#define CLRSC_EMPOWER_ROOT_CERT "com.seqlabs.emp_root_cert"

#define CLRSC_EMPOWER_DEVICE_CERT "com.seqlabs.emp_device_cert"

#define CLRSC_EMPOWER_DEVICE_CSR "com.seqlabs.emp_device_csr"

Provisioned certificates are updated using the clrscUpdateNamedCertificate() function.

Updating a named certificate also updates the public key it contains. Such public keys can be accessed

using the CoreLockr Crypto API, as explained in 2 CoreLockr Crypto API. The device certificates

whose associated keys are generated during provisioning are exceptions, CLRSC_OEM_DEVICE_CERT

and CLRSC_EMPOWER_DEVICE_CERT. Updating these device certificates only updates the certificate

data but not the corresponding device key.

Note: The EMSPARK_KEYS_CERTS.pdf describes the certificates and keys for provisioning on the

device, their origin and configuration. It also describes how such certificates and keys can be accessed

from the Rich OS after provisioning. This document is provided with the EmSPARK Development Kit or

upon request.

For reasons of security, when updating provisioned certificates, the new certificate file, its name as

declared in clrsc_ta_commands.h, command and OEM Command Key signature must be provided

in the form of an STP file. The README_named_certificates.txt explains the STP file format and

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

37

 EmSPARK Suite: CoreLockr Libraries User Guide

storage of the provisioned certificates. The supplied bin/make_named_cert_stp.sh shell script is

a reference implementation for creating the STP files.

The OEM Command Key can be changed through the device life cycle. The Secure Certificates API

allows updating the OEM Command Public Key by replacing the CLRSC_OEM_COMMAND_CERT

certificate. To make this change, as with any management command, the command updating the

CLRSC_OEM_COMMAND_CERT must be signed with the current OEM Command Key and verified on the

device.

Updating any of the provisioned certificates requires root privileges. The command to update the

provisioned certificates writes back to the partition where the manifest containing the certificates is

stored. Writing to this partition is restricted to root.

Figure 4 illustrates the command flow to update a provisioned certificate. On a customer server, a STP

file is created containing the certificate name, certificate contents, command and signature of that data.

The STP file shall be transferred to the device. On the device, an application uses the Secure

Certificates API to verify the signature against the OEM Command Public Key available in the TEE. The

API update function validates and authenticates the STP file contents. If the verification succeeds, the

command updating the provisioned certificate is executed. The command updates the certificate in the

manifest and its copies as described in README_named_certificates.txt.

Figure 4 Provisioned Certificate Management Flow

8.2. Certificate Store

The Certificate Store includes Certificate Authority certificates managed through the device life cycle. It

also includes the certificate revocation list (CRL). The Certificate Store uses an offline CRL, therefore,

the OEM must add certificates to this Revocation List manually. Any attempt to connect this CRL to an

online source would traverse the Rich OS (non-secure world) breaking the isolation provided by the

TEE.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

38

 EmSPARK Suite: CoreLockr Libraries User Guide

Commands modifying the Certificate Store must be signed with the Command Verification Private Key.

On the device, the OEM Command Verification public key is used to verify that the command is

legitimate and can be executed. These commands include certificate authority management functions

such as clrscAddCertificateAuthority(), clrscDeleteCertificateAuthority(),

clrscUpdateCertificateAuthority(), and certificate revocation functions,

clrscAddCertificateRevocation().

Commands to verify certificates against known CAs stored in the Certificate Store do not need to be

signed.

Figure 5 illustrates the flow of a management command. On a customer server, a command modifying

the Certificate Store and the certificate in question are signed with the OEM Command Private key (the

DER encoded certificate and command are hashed and the hash signed). The signed management

command and CA certificate shall be transferred to the device. On the device, an application uses the

Secure Certificates API to verify the signature against the OEM Command Public Key available in the

TEE. If the verification succeeds, the command modifying the Certificate Store is executed.

Figure 5 Certificate Store Management Flow

8.3. Certificate Authority Management Example

The example application illustrates capabilities of the EmSPARK Suite and the CoreLockr Secure

Certificates (CLRSC) library to provide secure storage and management of X.509 v3 certificates.

In order to simplify the configuration and building of the example, operations usually performed on a

secure server and securely sent to the board are instead executed on the board. For instance,

commands for certificate authority (CA) management that would be produced and signed on a server

and sent to the device to be executed are instead produced and signed on the board.

8.3.1. Background
The application performs the following operations:

• Load Certificate Authority certificates and certificates from the local file system

• Delete Certificate Authority certificates

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

39

 EmSPARK Suite: CoreLockr Libraries User Guide

• Update Certificate Authority certificates

• Verify certificates

• Add certificates to the Certificate Revocation List (CRL) in the TEE

• Extract certificates preinstalled in the TEE and write them as files in PEM format

• Update the provisioned certificates preinstalled in the TEE

The application uses the OpenSSL library to load certificates from the local file system, convert the

certificates from X509 structures to a DER encoded byte string and pass the certificates to the CLRSC

API.

Software and Data Requirements

• CoreLockr Secure Certificates example application, corelockr/corelockr_cert/examples

• Key and certificate files provided with the example

▪ OEM Command Private Key clrsc_example_command_key.pem: used to sign the

certificate management commands

▪ OEM Command Certificate: installed during provisioning and loaded in the TEE, exposed to

the API as CLRSC_OEM_COMMAND_CERT

▪ Certificate authority sample: clrsc_example_ca_cert.pem

▪ Certificates issued by sample CA clrsc_example_ca_cert.pem:

clrsc_example_server_01.pem and clrsc_example_server_02.pem

▪ clrsc_example_ca_key.pem private key to enable the user to generate additional

certificates

In the example, the OEM Command Private Key corresponds to an OEM private key used to sign

commands. This private key used for signing the certificate management commands usually is not

found on the device. To make easy to set up the test application and avoid the configuration of an

external system that sends signed commands to the board, the private key is provided and the example

application on the board uses it to sign the commands.

The application uses the OEM Command Private Key clrsc_example_command_key.pem to sign

the following commands sent to the TEE (such commands usually are received from a secure server):

▪ Load Certificate Authority certificates and certificates from the local file system

▪ Delete Certificate Authority certificates

▪ Update Certificate Authority certificates

▪ Add certificate to the Certificate Revocation List (CRL) in the TEE. This is specific for

certificates.

Building and Installing
Change to corelockr/corelockr_cert/examples and execute make which builds the executable

clrsc_example. Transfer the executable to the board to a directory of your choice. Transfer to the

same directory the certs directory containing the certificates. For additional instructions see

corelockr_cert/examples/README.txt.

8.3.2. Executing the Example
To manage certificates, verify that the date on the board is current and execute the commands as

instructed below.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

40

 EmSPARK Suite: CoreLockr Libraries User Guide

Add a Certificate Authority to the TEE
To add a certificate authority to the TEE execute

./clrsc_example a certs/clrsc_example_ca_cert.pem

where “a” adds the CA certificate, and “certs/clrsc_example_ca_cert.pem” is the path to the file

containing the certificate.

The application prints messages, including a confirmation:

Successfully saved certificate to TEE

Verify the Certificate Authority
To verify a certificate authority execute

./clrsc_example v certs/clrsc_example_ca_cert.pem

where “v” verifies clrsc_example_ca_cert.pem against the known certificate authorities.

After successful verification, the application prints:

Result of CLRSC verify function is: 1. Certificate is: VERIFIED

The verification of the clrsc_example_ca_cert.pem CA certificate is successful because the

certificate is self-signed and the certificate was already added in the TEE. Attempting to verify an

unknown CA certificate will return “NOT VERIFIED”.

Verify Certificates against the CA
To verify the example certificates against the CA execute

./clrsc_example v certs/clrsc_example_server_01.pem

./clrsc_example v certs/clrsc_example_server_02.pem

The verification of these certificates is successful because the issuing CA

(clrsc_example_ca_cert.pem) was previously added in the TEE.

Verification of a certificate issued by an unknown CA returns “NOT VERIFIED”.

Add a Certificate to the Certificate Revocation List (CRL)
To add a certificate to the CRL execute

./clrsc_example r certs/clrsc_example_server_01.pem

which produces this output:

Successfully add certificate to CRL in TEE

After added to the CRL, the certificate does not verify. Execution of

./clrsc_example v certs/clrsc_example_server_01.pem

produces this output

Result of CLRSC verify function is: 0. Certificate is: NOT VERIFIED

Entries to the CRL have effect only over certificates. Adding CA certificates to the CRL simply prevents

the CA from being verified, but certificates issued with such CA still verify. This is standard functionality.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

41

 EmSPARK Suite: CoreLockr Libraries User Guide

After adding a certificate to the revocation lists, an attempt to add it to the TEE again will return an

error.

Update a Certificate

A certificate may be updated

./clrsc_example u certs/clrsc_example_server_02.pem

which returns
Successfully updated certificate in TEE

Revoke a Certificate Authority
A Certificate Authority may be removed from known Certificate Authorities in the TEE

./clrsc_example d certs/clrsc_example_ca_cert.pem

After the CA removal, the certificates issued with the removed CA do not verify.

Extract Certificates from the TEE

Certificates saved in the TEE during the firmware flashing can be extracted and written as files in PEM

format. The following certificates saved in the TEE have a known name and assigned an ID in the

application:

ID = 0 – Get OEM Cloud Certificate

ID = 1 – Get OEM Root Certificate

ID = 2 – Get OEM Payload Certificate

ID = 3 – Get OEM Command Certificate

ID = 4 – Get OEM Device Certificate

ID = 5 – Get OEM Device CSR

ID = 6 – Get EmPower Cloud Certificate

ID = 7 – Get EmPower Root Certificate

ID = 8 – Get EmPower Device Certificate

ID = 9 – Get EmPower Device CSR

To generate a file of the OEM Cloud Certificate which is option “ID = 0” execute

./clrsc_example g 0

This creates clrsc_oem_cloud_cert.pem located in the directory where the application was

executed. If the device was flashed with the provided certs in the Kit, clrsc_oem_cloud_cert.pem

corresponds to the AWS IoT root CA certificate.

To extract the OEM Root Certificate, execute

./clrsc_example g 1

which creates clrsc_oem_cert.pem

To extract the OEM Device Certificate, execute

./clrsc_example g 4

which creates clrsc_device_cert.pem

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

42

 EmSPARK Suite: CoreLockr Libraries User Guide

Return Codes
The CoreLockr Secure Certificates API returns status codes from the TEE. Please refer to the

coretee_dev_kit/tc_sdk/include/tee_client_api.h or the API documentation for return

codes.

8.4. Connecting to AWS IoT Core

This example illustrates how to use the EmSPARK Suite and mbedTLS to connect to an AWS server.

This section explains concepts and how to configure the example. The contents are located in

corelockr/examples/AWS which includes:

• Application source code

• AWS embedded C SDK Version 3.0.1

• Patch against the 3.0.1 version

• Sample files to generate a user’s CA

8.4.1. Background
AWS allows devices to use X.509 certificates signed and issued by a customer defined certificate

authority (CA) to connect and authenticate with AWS IoT Core. This is one of the methods allowed for

authentication by “things” using MQTT protocol. MQTT is using TLS as a secure transport mechanism.

In IoT, each “thing” needs to be uniquely identified by the cloud application and that is realized by using

device certificates as identifiers. More information can be found in the following references:

• https://docs.aws.amazon.com/iot/latest/developerguide/client-authentication.html

• https://docs.aws.amazon.com/iot/latest/developerguide/iot-authorization.html

• https://docs.aws.amazon.com/iot/latest/developerguide/life-cycle-events.html

Once a device is registered with the AWS IoT Core, the authentication is performed using a standard

TLS mutual authentication based on the X.509 certificate associated to the thing. To register a device

this example uses the Just in Time Provisioning, which will check an unknown device certificate’s

signing Certificate Authority (CA). If the CA is in the list of CA’s on the IoT Core, then the registration

process is performed. More information can be found here:

https://docs.aws.amazon.com/iot/latest/developerguide/jit-provisioning.html.

The device certificate is intended for establishing TLS connections with mutual authentication. This

example illustrates how to use the device certificate and TrustZone based crypto for establishing a TLS

connection with Amazon AWS IoT Core. The example will demonstrate the TLS Connection, using

MQTT over TLS, and interacting with Device Shadow.

During initial device provisioning, the EmSPARK Suite creates the OEM Device Key and signs a Device

Certificate with the EmSPARK Defined OEM Key. To execute TLS mutual authentication and session

establishment with Amazon AWS IOT, the user will update two provisioned certificates managed in the

TEE with user’s generated certificates:

• OEM Root CA, the EmSPARK defined OEM CA provisioned on the device will be replaced with a

user defined OEM Root CA certificate.

• OEM Device Certificate generated during provisioning and signed with the EmSPARK defined

OEM Key will be replaced with a device certificate signed with the user defined OEM Root Key.

https://docs.aws.amazon.com/iot/latest/developerguide/client-authentication.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-authorization.html
https://docs.aws.amazon.com/iot/latest/developerguide/life-cycle-events.html
https://docs.aws.amazon.com/iot/latest/developerguide/jit-provisioning.html

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

43

 EmSPARK Suite: CoreLockr Libraries User Guide

The OEM Device Certificate needs to be signed with the private key that created the OEM Root CA so

the two certificates are chained. The EmSPARK Suite provides the tools to generate the new OEM

Device Certificate and update the OEM Root CA and Device Certificate in the TEE. The sections below

describe how to perform the needed steps.

The example requires the user to create an AWS account and upload the OEM Root CA to AWS. This

is due to the fact that Amazon AWS does not allow the activation of the same OEM Root CA for

multiple AWS accounts and the EmSPARK Defined OEM CA is the same on all devices.

The example uses the following keys and certificates:

1. OEM Cloud Certificate, during provisioning, the Evaluation Kit installs the AWS IoT Root

Certificate required for communication with AWS, CLRSC_OEM_CLOUD_CERT.

2. OEM Root Key, this private key is generated by the user. It is used to sign the OEM Device

Certificate and to complete the AWS Custom CA Certificate registration process with AWS IoT.

3. OEM Root CA, the user creates this certificate authority and saves it in the TEE,

CLRSC_OEM_ROOT_CERT. This certificate replaces the EmSPARK CLRSC_OEM_ROOT_CERT

provisioned on the device and the associated OEM Public Key it contains.

4. OEM Device Key, the device private and public keys are generated during provisioning and stored

in the TEE, CLRC_OEM_DEVICE_PRIVATE_KEY and CLRC_OEM_DEVICE_PUBLIC_KEY. Using the

CoreLockr APIs, applications can access the OEM Device Private and OEM Public Key from the

Rich OS (i.e. Linux). The OEM Device Private Key can be accessed for operations, even though

applications in Linux do not have visibility of the private key attributes. The OEM Device Public Key

is the key that the Rich OS (Linux) can see. The OEM Device Key is used to sign the Device

Certificate Signing Request, CLRSC_OEM_DEVICE_CSR.

5. OEM Device Certificate, the user generates the CLRSC_OEM_COMMAND_CERT signed with the

user’s OEM Root Key and saves it in the TEE. The execution of the TLS AWS example will register

the Device Certificate with the AWS IoT cloud.

6. OEM Command Public Key, installed during provisioning, CLRC_OEM_COMMAND_PUBLIC_KEY is

used to verify the commands that replace the OEM Root Certificate and OEM Device Certificate in

the Certificate Store.

The example preparation includes steps in a Linux development environment, on the device and on

AWS Console. The following is an outline of the steps described in the next sections of this document:

• In the Linux development environment, build the CoreLockr Secure Certificate example

application included in the CoreLockr Kit to manage and store certificates in the TEE, please see

8.4.2

• On the Device, extract the OEM Device Certificate Signing Request

• In the Linux development environment, generate custom OEM Root Key and Certificate and

OEM Device Certificate, and prepare the files needed for installation on the device

• On the Device, customize the OEM Root Certificate and OEM Device Certificate in the TEE, these

steps use the CoreLockr Secure Certificate example application, please see 8.4.3

• On the AWS Console, configure user’s account for AWS TLS example, see 8.4.6

▪ AWS IoT, register the OEM Root CA certificate

▪ AWS IoT, create a policy to manage access in AWS

▪ AWS Lambda, create a Lambda function to configure actions during the Just in Time

Registration

• In the Linux development environment, configure and build the TLS AWS example application,

see 8.4.7

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

44

 EmSPARK Suite: CoreLockr Libraries User Guide

• On the Device, execute the TLS AWS example application, see 8.4.8

Note: In order to simplify the configuration and building of the example, some operations usually

performed on a secure server and securely sent to the device are instead executed on the device. For

instance, signing the commands to update the certificates on the device that would be produced on a

server is instead signed on the device.

8.4.2. Linux Development Environment: Prepare Application and Key for Certificate Updates
The TLS AWS example application uses User’s keys and certificates, therefore some certs installed

during provisioning need to be replaced. The CoreLockr Secure Certificates API enables the rotation of

those certificates. These instructions will use the Certificate Authority Management example -8.1- to

update the OEM Root Certificate and OEM Device Certificates in the TEE. To accomplish this:

• Build the Certificate Authority Management application binary, clrsc_example, explained in 8.1

• Transfer the clrsc_example executable to the device

8.4.3. Device: Extract OEM Device Certificate Signing Request
Use the CoreLockr Secure Certificates example to extract the OEM Device CSR from the TEE:

• Change to the directory where clrsc_example was transferred

• Extract the OEM Device CSR from CoreTEE using the clrsc_example example

./clrsc_example g 5

Where g 5 extracts the certificate signing request (ID = 5 – Get OEM Device CSR). The

application generates a DER encoded file, clrsc_oem_device_csr.der.

• Transfer the clrsc_oem_device_csr.der to the Linux development environment,

~/corelockr/examples/AWS/tools/ directory

8.4.4. Linux: Prepare User’s OEM Root Certificate and OEM Device Certificate
Because these are provisioned certificates, to update them on the device requires that an STP file be

provided. This allows the operation to be validated and authenticated before it is permitted to continue.

This example instructs how to generate the certificates and how to generate the STP files.

To generate the certificates, ~/corelockr/examples/AWS/tools/ contains a sample CA

configuration file, ~/AWS/tools/conf/ca.conf, and auxiliary text files to generate a CA. The user

can use these files to generate a custom OEM Root Certificate and OEM Device Certificate.

To generate the STP files, the example instructs the use of ~/corelockr/corelockr_cert/bin/

make_named_cert_stp.sh. The script takes the following arguments:

• Signing key, -k: the private key associated with CLRC_OEM_COMMAND_PUBLIC_KEY provisioned

on the device. This key is used to authenticate commands that change trust on the device. In the

Evaluation Kit, the sample private key file associated with CLRC_OEM_COMMAND_PUBLIC_KEY is

supplied with the Secure Certificates example application.

• ID or name under which the certificate is accessed, -n: name of the provisioned certificate defined

in ~/corelockr/corelockr_cert/include/clrsc_ta_commands.h.

• Path to the certificate file, -c: the new certificate file in PEM or DER encoding.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

45

 EmSPARK Suite: CoreLockr Libraries User Guide

• The path to the output STP file, -o: file to be transferred to the device containing the certificate

name, new certificate contents and signature of that data.

Here is an overview and then detailed instructions.

Overview
1. Generate a new OEM Root Key and OEM Root CA

2. Create a new Device Certificate signed with the user’s new OEM Root Key

3. Generate STP files containing the certificates and transfer them to the device

NOTE: The description in the following sections assumes that the OEM Root Key is a customer’s

sample key used for testing purposes.

User Instructions: Detail

• Change to ~/corelockr/examples/AWS/tools where clrsc_oem_device_csr.der was

transferred

• Generate the custom OEM Root Key and OEM Root CA. To generate a self-signed CA certificate,

in ~/AWS/tools/:

▪ Customize ~/AWS/tools/conf/ca.conf or produce a CA configuration file used for signing

the Device CSR. Note that the example requires that key and cert be ECDSA P256. Those

parameters should not be changed to avoid errors during the application execution.

▪ Generate new OEM Root Key, in this example the filename is aws_custom_ca_key.pem:

openssl ecparam -out aws_custom_ca_key.pem -name prime256v1 -genkey

▪ Generate custom OEM Root CA cert, e.g. aws_custom_ca_cert.pem:

openssl req -x509 -config conf/ca.conf -newkey

ec:aws_custom_ca_key.pem -sha256 -nodes -out aws_custom_ca_cert.pem -

outform PEM

The user must register the OEM Root CA file with AWS (please see Register the CA to the

AWS IoT section in 8.4.6). The following section assumes the OEM Root CA filename is

aws_custom_ca_cert.pem.

• Generate the custom OEM Device Certificate

▪ Convert the OEM Device CSR transferred from the device from DER to PEM encoding

openssl req -in clrsc_oem_device_csr.der -inform DER -out

clrsc_oem_device_csr.pem -outform PEM

▪ Generate the new OEM Device Certificate by signing the PEM encoded OEM Device CSR and

using the user’s new OEM Root Key and OEM Root CA

openssl ca -verbose -config conf/ca.conf -policy signing_policy -

extensions signing_req -out new_device_cert.pem -infiles

clrsc_oem_device_csr.pem

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

46

 EmSPARK Suite: CoreLockr Libraries User Guide

Where conf/ca.conf is user configured and expects aws_custom_ca_key.pem and

aws_custom_ca_cert.pem key and certificate names. The output is

new_device_cert.pem.

Answer “y” to the questions “Sign the certificate” and “commit?”. To comply with the

TLS mutual authentication protocol, the new Device Certificate is signed with the new OEM

Root Key.

• Generate the STP files containing the certificates generated in the previous step and that replace

OEM Root Certificate and OEM Device Certificate. In ~/tools/:

▪ Create a symbolic link in which the source is the key to sign Certificate Store management

commands, OEM Command Key, provided with the Secure Certificates API example

~/corelockr_cert/examples/certs/clrsc_example_command_key.pem and

destination is clrsc_command_signing_key.pem, e.g.:

ln -s ../../../corelockr_cert/examples/certs/clrsc_example_command_key.pem

clrsc_command_signing_key.pem

▪ Generate the STP file to update the OEM Root Certificate

../../../corelockr_cert/bin/make_named_cert_stp.sh -k

clrsc_command_signing_key.pem -n "com.seqlabs.oem_root_cert" -c

aws_custom_ca_cert.pem -o new_oem_root_cert.stp

Where -k clrsc_command_signing_key.pem is the private key that authorizes

commands, -n "com.seqlabs.oem_root_cert" is the name of the OEM Root Certificate

defined name, -c aws_custom_ca_cert.pem is the new OEM Root Certificate filename and

-o new_oem_root_cert.stp is the STP file to transfer to the device.

▪ Generate the STP file to update the OEM Device Certificate

../../../corelockr_cert/bin/make_named_cert_stp.sh -k

clrsc_command_signing_key.pem -n "com.seqlabs.oem_device_cert" -c

new_device_cert.pem -o new_oem_device_cert.stp

• Transfer to the device the STP files containing the certificate name, certificate contents and signature

of that data, e.g. new_oem_root_cert.stp and new_oem_device_cert.stp.

8.4.5. Board: Customize the Device Certificate and OEM Root Certificate
After transferring the STP files to the device, the user replaces the provisioned certificates with the

custom certificates. Here is an overview of steps on the device and then detailed instructions.

1. For the sake of simplicity, the Secure Certificates example application uses the provided sample

private key file to sign on the board the commands updating the certificates

2. Use the CoreLockr Secure Certificates example to update the EmSPARK Defined OEM Root CA in

the TEE with the new OEM Root CA and store it in non-volatile-memory so that the user’s certificate

will be persistent after device reboots

3. Use the CoreLockr Secure Certificates example to update the OEM Device Certificate in the TEE

with the new one and store it in non-volatile-memory

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

47

 EmSPARK Suite: CoreLockr Libraries User Guide

User Instructions: Detail
Execute the following steps to update in the TEE the OEM Root CA and OEM Device Certificate:

• Change to the directory where the Secure Certificates example application is located,
~/corelockr/corelockr_cert/examples/clrsc_example

• Transfer to this directory the command signing key located in the Kit in
~/corelockr/corelockr_cert/examples/certs/clrsc_example_command_key.pem

• The clrsc_example example expects that the signing key for certificate management commands

be named clrsc_command_signing_key.pem, thus create a symbolic link

ln -s clrsc_example_command_key.pem clrsc_command_signing_key.pem

• Replace in the TEE the provisioned OEM Root CA certificate with the new OEM Root CA contained

in the STP file. Because updating any of the provisioned certificates requires root privileges, as

root execute

./clrsc_example n new_oem_root_cert.stp

Where n updates the named certificate identified in the STP file. Successful execution prints

messages such as Successfully updated the named certificate, corresponding to

com.seqlabs.oem_root_cert defined in clrsc_ta_commands.h

#define CLRSC_OEM_ROOT_CERT "com.seqlabs.oem_root_cert"

Updating the OEM Root CA also updates the OEM Root Public Key in the TEE, i.e. the key value

defined in ~/corelockr/corelockr_crypto/include

#define CLRC_OEM_PUBLIC_KEY "com.seqlabs.oem_pub_key"

• Replace the OEM Device Certificate in TEE with the new certificate contained in the STP file, as

root execute

./clrsc_example n new_oem_device_cert.stp

Where n updates the named certificate and contents in the STP file. Successful execution prints

messages such as Successfully updated the named certificate, corresponding to

com.seqlabs.oem_device_cert defined in clrsc_ta_commands.h

#define CLRSC_OEM_DEVICE_CERT "com.seqlabs.oem_device_cert"

Now, the OEM Root CA and OEM Device Certificate are updated with the user created certs.

8.4.6. AWS Console: Configure User’s Account for AWS TLS Example

The user must go through the following steps to set and test the TLS connectivity with AWS IoT (step

by step instructions are provided by the Amazon website. Some steps are detailed below with

screenshots: http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html):

• Create an Amazon AWS account

• Sign in to the AWS IoT Console

• Register the CA to the AWS IoT

• Create a Publish/Subscribe Policy

• Create a Lambda Function

http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

48

 EmSPARK Suite: CoreLockr Libraries User Guide

1. Register the CA to the AWS IoT
As per Amazon AWS,

to register your CA certificate, you must get a registration code from AWS IoT, sign a private key

verification certificate with your CA certificate, and pass both your CA certificate and a private key

verification certificate to the register-ca-certificate CLI command. The Common Name field in the

private key verification certificate must be set to the registration code generated by the get-registration-

code CLI command. A single registration code is generated per AWS account. You can use

the register-ca-certificate command or the AWS IoT console to register CA certificates.

To register the CA certificate, follow the instructions in the screenshot below and check the two boxes in

order to load and activate the CA.

In Step 4, “Use the CSR that was signed with the CA private key” use the AWS Custom CA Certificate

and AWS Custom CA Key, i.e. “-CA aws_custom_ca_cert.pem –Cakey

aws_custom_ca_key.pem”.

In Step 5, “Select CA certificate”, upload the AWS Custom CA Certificate, i.e.

aws_custom_ca_cert.pem.

2. AWS Console: Create a Policy
Create a policy. Appendix B: Policy provides a sample global policy for the following actions:

• Connect

• Update the thing shadow

• Publish

• Subscribe

In the policy, configure the Amazon Resource Names (ARNs) region and AWS account-id for your

account. In the example policy,

▪ us-west-1 corresponds to the region

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

49

 EmSPARK Suite: CoreLockr Libraries User Guide

▪ 123456789012 corresponds to the ID of the AWS account that owns the resource

AWS information about Amazon Resource Names (ARNs):

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

3. AWS Console: Create a Lambda Function
The device will self-register the first time it connects to AWS. To configure the AWS actions during the

Just in Time Registration, the user creates a Lambda function. Appendix C: Lambda Function is a

python file ready to use as the Lambda function code that does the following:

• Get environment and event data

• Get device certificate information

• Create a thing (thing name is thing_name = cn_string + ":" + subj_key_id)

▪ In this documentation
Device_Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c

• Attach policy to device certificate

• Activate the certificate to allow connections from that device

• Attach certificate to thing

On the AWS console, select Lambda from the Services options. In the “Create function” page enter the

required information:

• “Function name”: user’s choice. This example uses “just_in_time”

• “Runtime” option select “Python 3.8”

• “Permissions”, select the desired role, however, selecting “Create a new role with basic Lambda

permissions” is sufficient

In “Configuration”:

• “Add trigger” select “AWS IoT”

▪ Select Custom IoT rule

▪ In Rule, select Create a new rule identifying the CA registered in Register the CA to the

AWS IoT, e.g. JITR_CA

▪ Enter description

▪ Enter query statement for the CA, e.g.

SELECT * FROM

‘$aws/events/certificates/registered/f0ae05040a9604265cc6f9304782370

acd0b1f76c19ceea4560f41afb5e6f64f’

Where

f0ae05040a9604265cc6f9304782370acd0b1f76c19ceea4560f41afb5e6f64f is

the CA Certificate ARN in the IoT Core CA Certificate page as illustrated in the figure, e.g.

arn:aws:iot:us-west-

2:132302955978:cacert/f0ae05040a9604265cc6f9304782370acd0b1f76c19

ceea4560f41afb5e6f64f

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

50

 EmSPARK Suite: CoreLockr Libraries User Guide

▪ Ensure the rule is enabled

• “Function code”: use the python source code included in Appendix C: Lambda Function

In “Permissions”, the role has permissions to the following, as shown in the image:

• iot.attach_principal_policy

• iot.create_thing

• iot.update_certificate

• iot.attach_thing_principal

• iot.list_thing_principals

• iot.describe_certificate

8.4.7. Linux Development Environment: Configure and Build the TLS AWS Example
Application

This example application, sli_dev, demonstrates the capabilities of the EmSPARK Suite for

supporting integration with cloud services such as Amazon Web Services. The application uses the

CoreLockr TLS IO API, CoreLockr Crypto API, CoreLockr Secure Certificates API and keys and

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

51

 EmSPARK Suite: CoreLockr Libraries User Guide

certificates stored in the TEE Key Store and Certificate Store. This example connects to an AWS server

and is intended for proof of concept only, not for commercial use.

The AWS embedded C SDK was modified to use the CoreLockr TLSIO API for TLS communication

with the AWS servers. The AWS SDK was originally downloaded from here:

https://github.com/aws/aws-iot-device-sdk-embedded-C

Version 3.0.1 (SHA ID: d039f075e1cc2a2a7fc20edc6868f328d8d36b2f)

In addition to the full git repo, the Suite provides a patch against the 3.0.1 version, located in

corelockr/examples/AWS/aws-iot-c/:

0001-Sequitur-CoreLockr-TLSIO-AWS-Example.patch

For additional information about the example, please see corelockr/examples/AWS/README.txt.

To prepare the application:

• Configure the specific MQTT host in the TLS AWS example application

• Build the TLS AWS example application

User Instructions: Building and Installing the Application

• Configure the Application

▪ In the development environment, in corelockr/examples/AWS/aws-iot-

c/samples/linux/sli_dev/aws_iot_config.h set AWS_IOT_MQTT_HOST to the

AWS URL configured Endpoint

• Build the application executable

▪ In corelockr/examples/AWS/aws-iot-c/samples/linux/sli_dev execute make to

build the application binary, sli_test

• Transfer sli_test to the board to a directory of your choice.

8.4.8. Board: Execute the TLS AWS Example Application
The application scope includes:

• AWS connection

• AWS subscription and publishing events

• AWS shadow functionality

• AWS shadow interoperability

On the board, change to the directory where sli_dev/sli_test is located to execute it. The

application will use the Device Certificate and the OEM Root CA in the TEE.

Usage for sli_test:

 -h – Host Address

 -p – Port

 -l – Path to LED light control

 -t – Test Type:

 1 – CONNECTION

 2 – SUBSCRIBE_PUBLISH

 3 – SHADOW FUNCTIONAL

 4 – SHADOW INTEROP

https://github.com/aws/aws-iot-device-sdk-embedded-C

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

52

 EmSPARK Suite: CoreLockr Libraries User Guide

The application prints output on the device terminal. AWS events can be seen on multiple modules

including AWS IoT Core and CloudWatch Logs.

The –t switch option is required. The –h, -p and –l switches are optional and intended to change the

host, port and LED path configured in aws_iot_config.h for a given test type.

1. AWS connection
When the device connects to AWS for the first time, the Just in Time Registration is performed. Based

on the Lambda Function configured in AWS Console: Create a Lambda Function, the Thing and

Device Certificate are created in AWS.

On the device, the application prints the following messages:

./sli_test -t1

AWS IoT SDK Version 3.0.1- [Device ID: Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c]

Connecting...

Continuing...

Disconnecting

On AWS, the Device_Certificate device thing and certificate can be seen in IoT Core as shown in

the figure:

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

53

 EmSPARK Suite: CoreLockr Libraries User Guide

2. AWS Subscription and Publishing Events

AWS Subscription

./sli_test -t2

AWS IoT SDK Version 3.0.1- [Device ID: Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c]

Connecting...

Continuing...

Subscribing to TOPIC [$aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/TestSubPub]...

{ "message" : "Publishing message on: QOS0" }...

{ "message" : "Publishing message on: QOS1" }...

*****************Subscribe callback

Topic: $aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/TestSubPub{ "message" :

"Publishing message on: QOS0" }

Payload – { "message" : "Publishing message on: QOS0" }

Looping for subscriptions...

Publishing Messages

On the AWS console, select Test. On the MQTT client page, enter the topic for which the device is

registered and select Subscribe to topic. In this example, the topic is:

$aws/things/${iot:ClientId}/TestSubPub

e.g.

$aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/TestSubPub

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

54

 EmSPARK Suite: CoreLockr Libraries User Guide

To send messages from the AWS console to the device, enter the topic on the Publish text

box and select the Publish to topic button.

On the board, observe the messages from the AWS console

*****************Subscribe callback

Topic: $aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/TestSubPub{

 "message": "Hello from AWS IoT console"

}

Payload – {

 "message": "Hello from AWS IoT console"

}

3. AWS shadow functionality

./sli_test -t3

AWS IoT SDK Version 3.0.1- [Device ID: Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c]

Shadow Connect...

Subscribing to SHADOW...

Subscribe: $aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/shadow/update/get/accepted

Subscribe: $aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/shadow/update/get/rejected

Subscribe: $aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/shadow/update/delta

Subscribe: $aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/shadow/update/documents

Subscribe: $aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/shadow/update/accepted

Subscribe: $aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/shadow/update/rejected

Sleep..

Publishing...

Shadow published ‘update’ successfully

Yield...

Disconnecting

4. AWS shadow interoperability
The application uses the device shadow to retrieve and update a device LED state. The application

controls /sys/devices/platform/leds/leds/user/brightness. The path to the LED can be

modified in the aws-iot-config.h file.

During execution, on the device observe the green LED. To interact with the application, enter 1, 0 or x

when requested. The application prints messages like these:

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

55

 EmSPARK Suite: CoreLockr Libraries User Guide

./sli_test –t4

AWS IoT SDK Version 3.0.1- [Device ID: Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c]

[iot_tls_init] – Host is av98lkolvdy9i-ats.iot.us-west-2.amazonaws.com

Shadow Connect...

Setting TLS IO State to OPEN

Subscribing to SHADOW...

led_state from shadow : 1

Current LED state is: ON

Please enter the desired state [1,0] – or x to exit:

..0....

Setting DESIRED state to: OFF

Setting _REPORTED_ STATE to: OFF

Current LED state is: OFF

Please enter the desired state [1,0] – or x to exit:

On AWS IoT Core, the shadow state is updated.

9. CORELOCKR SECURE STORAGE API
The CoreLockr Secure Storage API protects data at rest. It enables saving data as encrypted persistent

objects through the TEE. The persistent objects are encrypted with device specific keys.

The API functionality includes:

• Creation and writing of encrypted files

• Opening and reading from encrypted files

• Use of a password for these operations

In the Kit, corelockr/corelockr_storage contains:

• lib, libclrf.a library

• include, header files

• ta, 5840EE82-131E-4259-BB1F2A9286DA48A8.stp associated TA

• docs, for library documentation see ~/docs/html/index

• README.txt, general API information

• COPYRIGHT, copyright notice

• example, application

This document describes the sample application in 9.1 Secure Storage.

9.1. Secure Storage Example

This example application illustrates features of the EmSPARK Suite, Secure Storage API, to protect

data at rest (it does not protect data from the operating system). The application reads a secret from

the console and writes the data as a persistent object through the TEE. Optionally a password can be

provided. Then, the application prints the contents of the encrypted file. If a password was provided

during the file creation, it is required to show the file contents.

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

56

 EmSPARK Suite: CoreLockr Libraries User Guide

9.1.1. Background

Software and Data Requirements
Secure Storage example application, corelockr/corelockr_storage/example

Building and Installing
Change to the corelockr/corelockr_storage/example/ directory and execute make to build

the application, storage_example. Transfer the executable to the board.

9.1.2. Executing the Example
To write/create an encrypted file (i.e. a persistent object in the TEE’s store), the example application

receives the following parameters:

storage_example w <filename> "<data>" [password (optional)]

where “w” is the application command for writing a file, filename is the name of the written persistent

object in the TEE’s store and “data” is the secret to be stored. password is an optional parameter

that if provided becomes required for decryption of contents.

To show the encrypted contents:

storage_example r <filename> [password (optional)]

where “r” is the application command for reading, filename is the name used when the encrypted file

was written and password is required if used during encryption.

Create and Write Encrypted Files
On the board, change to the directory where storage_example was transferred and execute

./storage_example w myfilename "This is a secret" mypassword

In this case, the file is written using a password. If writing the file succeeds, the application prints:

Secret written to: myfilename

The file name provided by the user (myfilename) is not visible in the filesystem, file names are only

numbers and their contents are encrypted.

To create/write a file with no password, execute:

./storage_example w myfilename2 "This is a new secret"

Successful operation prints the output on the console, i.e.

Secret written to: myfilename2

Note that an attempt to overwrite without a password a file name that was originally created with a

password will return an error. For example, executing:

./storage_example w myfilename "This is a secret"

returns:

Could not open myfilename: 0xffff0102

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

57

 EmSPARK Suite: CoreLockr Libraries User Guide

Decrypt Files and Print Data

To show the contents of the file encrypted with a password execute:

./storage_example r myfilename mypassword

If the decryption is successful, the application prints on the console:

Secret retrieved: This is a secret

In the previous step, the file was created with a password, therefore the password is required. If the

correct password is not provided the corresponding error is printed on the console, e.g.

Could not open myfilename: 0xffff0102

For a complete list of return codes, see the Secure Storage API documentation.

To show the contents of the file encrypted without a password execute:

./storage_example r myfilename2

which returns

Secret retrieved: This is a new secret

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

58

 EmSPARK Suite: CoreLockr Libraries User Guide

APPENDIX A: SUPPORTED CRYPTOGRAPHIC OPERATIONS

The following table details the cryptographic operations supported with the EmSPARK Suite.

Certificate management

Store certificate in TEE

Delete certificate from

TEE

Update certificate in TEE

Verify signature of a

certificate

Add certificate to CRL

Key management

Create key in TEE

keystore

Load key from a TEE

keystore

Save key in a TEE

keystore

Delete key in a TEE

keystore

Cryptographic operations

Hashing MD5

 SHA1

 SHA224

 SHA256

 SHA384

 SHA512

Symmetric crypto

functions AES_ECB_NOPAD

 AES_CBC_NOPAD

 AES_OFB

 AES_CTR

 AES_CFB_128

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

59

 EmSPARK Suite: CoreLockr Libraries User Guide

 AES_XTS_NOPAD

 DES3_ECB_NOPAD

 DES3_CBC_NOPAD

 DES3_OFB

 DES3_CFB_128

MAC functions AES_CMAC

 HMAC_MD5

 HMAC_SHA1

 HMAC_SHA224

 HMAC_SHA256

 HMAC_SHA384

 HMAC_SHA512

Authenticated encryption AES_GCM

 AES_CCM

Asymmetric signature

functions RSASSA_PKCS1_V1_5_MD5

 RSASSA_PKCS1_V1_5_SHA1

 RSASSA_PKCS1_V1_5_SHA224

 RSASSA_PKCS1_V1_5_SHA256

 RSASSA_PKCS1_V1_5_SHA384

 RSASSA_PKCS1_V1_5_SHA512

 RSASSA_PKCS1_PSS_MGF1_SHA1

 RSASSA_PKCS1_PSS_MGF1_SHA224

 RSASSA_PKCS1_PSS_MGF1_SHA256

 RSASSA_PKCS1_PSS_MGF1_SHA384

 RSASSA_PKCS1_PSS_MGF1_SHA512

 DSA_SHA1

 DSA_SHA224

 DSA_SHA256

 ECDSA_P192

 ECDSA_P224

 ECDSA_P256

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

60

 EmSPARK Suite: CoreLockr Libraries User Guide

 ECDSA_P384

 ECDSA_P521

Asymmetric Encryption

Functions RSAES_PKCS1_V1_5

 RSAES_PKCS1_OAEP_MGF1_SHA1

 RSAES_PKCS1_OAEP_MGF1_SHA224

 RSAES_PKCS1_OAEP_MGF1_SHA256

 RSAES_PKCS1_OAEP_MGF1_SHA384

 RSAES_PKCS1_OAEP_MGF1_SHA512

 RSA_NOPAD

Key Derivation DH_DERIVE_SHARED_SECRET

 ECDH_P192

 ECDH_P224

 ECDH_P256

 ECDH_P384

 ECDH_P521

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

61

 EmSPARK Suite: CoreLockr Libraries User Guide

APPENDIX B: POLICY
Sample policy:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": "iot:Connect",

 "Resource": "arn:aws:iot:us-west-

1:123456789012:client/${iot:ClientId}"

 },

 {

 "Effect": "Allow",

 "Action": [

 "iot:UpdateThingShadow",

 "iot:GetThingShadow"

],

 "Resource": "arn:aws:iot:us-west-

1:123456789012:topic/$aws/things/${iot:ClientId}/shadow/*"

 },

 {

 "Effect": "Allow",

 "Action": [

 "iot:Publish",

 "iot:Receive"

],

 "Resource": "arn:aws:iot:us-west-

1:123456789012:topic/$aws/things/${iot:ClientId}/*"

 },

 {

 "Effect": "Allow",

 "Action": [

 "iot:Subscribe"

],

 "Resource": [

 "arn:aws:iot:us-west-

1:123456789012:topicfilter/$aws/things/${iot:ClientId}/shadow/*",

 "arn:aws:iot:us-west-

1:123456789012:topicfilter/$aws/things/${iot:ClientId}/*"

]

 }

]

}

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

62

 EmSPARK Suite: CoreLockr Libraries User Guide

APPENDIX C: LAMBDA FUNCTION

import os

import base64

import binascii

import json

import boto3

import botocore

iot = boto3.client(‘iot’)

client = boto3.client(‘iot-data’)

ZT_THING_TYPE_NAME = ‘sequitur-zero-touch-kit’

def lambda_handler(event, context):

 # Get evironment and event data

 region = os.environ[‘AWS_DEFAULT_REGION’]

 account_id = event[‘awsAccountId’]

 certificate_id = event[‘certificateId’]

 print("Received event: " + json.dumps(event, indent=2))

 # Get device certificate information

 response = iot.describe_certificate(certificateId=certificate_id)

 certificate_arn = response[‘certificateDescription’][‘certificateArn’]

 # Convert the device certificate from PEM to DER format

 pem_lines = response[‘certificateDescription’][‘certificatePem’].split(‘\n’) #

split PEM into lines

 pem_lines = list(filter(None, pem_lines)) # Remove empty lines

 raw_pem = ‘’.join(pem_lines[1:-1]) # Remove PEM header and footer

and join base64 data

 cert_der = base64.standard_b64decode(raw_pem) # Decode base64 (PEM) data into

DER certificate

 # Find the subjectKeyIdentifier (quicker than a full ASN.1 X.509 parser)

 subj_key_id_prefix = b’\x30\x1D\x06\x03\x55\x1D\x0E\x04\x16\x04\x14’

 subj_key_id_index = cert_der.index(subj_key_id_prefix) +

len(subj_key_id_prefix)

 subj_key_id =

binascii.b2a_hex(cert_der[subj_key_id_index:subj_key_id_index+20]).decode(‘ascii’)

 print(‘Certificate Subject Key ID: {}’.format(subj_key_id))

 # Find CN in subject name.

 cn_id_prefix = b’\x06\x03\x55\x04\x03’

 cn_id_index = cert_der.index(cn_id_prefix) + len(cn_id_prefix) + 1

 cn_id_len = int.from_bytes(cert_der[cn_id_index:cn_id_index+1], "little") + 1

 issuer_cn_bytes = cert_der[cn_id_index+1:cn_id_index+cn_id_len]

 issuer_cn_string = issuer_cn_bytes.decode("utf-8")

 print(‘Certificate issuer CN: {}’.format(issuer_cn_string))

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

63

 EmSPARK Suite: CoreLockr Libraries User Guide

 # 2nd call, index at num-bytes

 cn_id_index = cert_der.index(cn_id_prefix, cn_id_index) + len(cn_id_prefix) + 1

 cn_id_len = int.from_bytes(cert_der[cn_id_index:cn_id_index+1], "little") + 1

 cn_bytes = cert_der[cn_id_index+1:cn_id_index+cn_id_len]

 cn_string = cn_bytes.decode("utf-8")

 cn_string=cn_string.replace(‘ ‘,’_’)

 print(‘Certificate subject CN: {}’.format(cn_string))

 # extract Serial Number

 sn_id_prefix = b’\xa0\x03\x02\x01\x02\x02’

 sn_id_length_index = cert_der.index(sn_id_prefix) + len(sn_id_prefix)

 sn_id_length =

int.from_bytes(cert_der[sn_id_length_index:sn_id_length_index+1], "little")

 sn_id_bytes = cert_der[sn_id_length_index+1:sn_id_length_index+sn_id_length+1]

 serial_number_string = binascii.b2a_hex(sn_id_bytes).decode(‘ascii’)

 print(‘Serial number: {}’.format(serial_number_string))

 # Thing name and MQTT client ID will be the subject key ID

 thing_name = cn_string + ":" + subj_key_id

 client_id = thing_name

 thing_attributes = {

 ‘attributes’: {

 ‘serial_number’ : serial_number_string,

 ‘initialized’ : ‘0’,

 ‘subject_cn’ : cn_string

 }

 }

 # Create a thing (no error if it already exists)

 response = iot.create_thing(

 thingName=thing_name,

 attributePayload=thing_attributes)

 # Attach policy to device certificate. Certificates must have a policy

 # before they can be activated.

 Iot.attach_principal_policy(

 policyName=’GlobalDevicePolicy’,

 principal=certificate_arn)

 # Activate the certificate to allow connections from that device

 response = iot.update_certificate(

 certificateId=certificate_id,

 newStatus=’ACTIVE’)

 # Attach certificate to thing

 response = iot.attach_thing_principal(

 thingName=thing_name,

 principal=certificate_arn)

EDES-0002-Rev F.

©2016-2022 Sequitur Labs, Inc. | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | f: +1 425 654 2051 | www.sequiturlabs.com

64

 EmSPARK Suite: CoreLockr Libraries User Guide

CHANGE HISTORY

DATE VERSION RESPONSIBLE DESCRIPTION
November 15, 2019 1.0 Julia Narvaez Produced document for release.

June 2, 2020 1.1 Julia Narvaez Added Opaque Keys in CoreLockr Crypto API
section and Key Utility example description in
CoreLockr Payload Verification API section.

July 9, 2020 1.2 Julia Narvaez Added CoreLockr TLS IO API and updated
AWS example.

August 4, 2020 1.3 Julia Narvaez Updated AWS example.

August 11, 2020 1.4 Julia Narvaez Updated numbering of some examples.

September 24,
2020

1.5 Julia Narvaez Added EmSPARK architecture graphic.

November 4, 2020 2.0 Julia Narvaez Added Opaque Objects in CoreLockr Crypto
API section.

November 30,
2020

2.1 Julia Narvaez Simplified AWS example process

September 21,
2021

3.0 Julia Narvaez Expanded library descriptions and
EmPOWER enabled updates.

March 3, 2022 3.1 Julia Narvaez In CoreLockr Secure Certificates section,
added user privilege requirements to update
provisioned certificates.

March 18, 2022 3.2 Julia Narvaez Updated introduction.

August 2, 2022 3.3 Julia Narvaez Updated CoreLockr Secure Certificates
section with new procedure to update
provisioned certificates, expanded Crypto API
Key Store and Provisioned Keys content and
clarified Opaque Objects creation process.

August 31, 2022 3.4 Julia Narvaez Updated description of Secure Storage API.

	CoreLockrTM Libraries User Guide
	1. CoreLockr(Libraries
	1.1. Acronyms and Terminology
	1.2. EmSPARK(Suite Contents
	1.3. CoreLockr(APIs
	1.4. Preinstalled Keys and Certificates in the TEE

	2. CoreLockr(Crypto API
	2.1. Key Management
	2.2. Key Store
	2.3. Access to Provisioned Keys
	2.4. Cryptographic operations
	2.5. Opaque Keys
	2.6. Opaque Objects
	2.7. Opaque Keys and Opaque Objects Usage
	2.8. Examples
	2.8.1. Key Management and Provisioned Key Access Example
	Software and Data Requirements
	Building and Installing
	Flow and Code Walkthrough
	Executing the Example

	2.8.2. Key Store Example
	Software and Data Requirements
	Building and Installing
	Flow and Code Walkthrough
	Executing the Example

	3. CoreLockr(Crypto API – Opaque Keys
	3.1. Creating and Storing Opaque Keys
	3.1.1. Creating Opaque Key Packages
	Saving Opaque Key on Device Key Store

	3.2. Opaque Key Example

	4. CoreLockr(Crypto API – Opaque Objects
	4.1. Creating and Decrypting Opaque Objects
	4.2. Opaque Object Example
	Software and Data Requirements
	Building
	4.2.1. Executing the Example

	5. CoreLockr(Payload Verification and Key Utilities API
	5.1. Payload Verification Example
	5.1.1. Background
	Software and Data Requirements
	Building and Installing

	5.1.2. Executing the Example
	Create a Signed Payload Package in a System External to the Board
	Create a Signed Package on the Board
	Verify a Package, Successful Verification Scenarios
	Verify a Package, Verification Failure Scenarios

	5.2. Key Utilities Example
	5.2.1. Background
	Software and Data Requirements
	Building and Installing

	5.2.2. Executing the Example
	Key Utilities Example
	Opaque Key Example

	6. CoreLockr(Crypto OpenSSL Engine API
	6.1. OpenSSL with Crypto in TrustZone for Secure Communication Example
	6.1.1. Background
	Software and Data Requirements
	Building and Installing

	6.1.2. Executing the Example
	Start the Server
	Start the Client

	6.2. OpenSSL with Crypto in TrustZone for Cryptographic Functions Example
	6.2.1. Background
	Software and Data Requirements
	Building and Installing

	6.2.2. Executing the Example
	Load Engine Code Walkthrough

	6.3. OpenSSL Using Named Keys Stored in the TEE Example
	6.3.1. ECDSA Key Creation and Storing in the Key Store
	Software and Data Requirements
	Building and Installing
	Executing the Example
	Flow and Code Walkthrough

	6.3.2. Named Key Use with OpenSSL
	Software and Data Requirements
	Building and Installing
	Executing the Example
	Flow and Code Walkthrough

	6.3.3. Named Key Deletion from the Key Store
	Software and Data Requirements
	Building and Installing
	Executing the Example
	Flow and Code Walkthrough

	6.4. OpenSSL Command Line

	7. CoreLockr(TLS IO API
	Kit Contents
	7.1. Communication with a Server Example
	Building and Installing
	Flow and Code Walkthrough
	Executing the Example

	8. CoreLockr(Secure Certificates API
	Kit Contents
	8.1. Provisioned Certificates
	8.2. Certificate Store
	8.3. Certificate Authority Management Example
	8.3.1. Background
	Software and Data Requirements
	Building and Installing

	8.3.2. Executing the Example
	Add a Certificate Authority to the TEE
	Verify the Certificate Authority
	Verify Certificates against the CA
	Add a Certificate to the Certificate Revocation List (CRL)
	Update a Certificate
	Revoke a Certificate Authority
	Extract Certificates from the TEE
	Return Codes

	8.4. Connecting to AWS IoT Core
	8.4.1. Background
	8.4.2. Linux Development Environment: Prepare Application and Key for Certificate Updates
	8.4.3. Device: Extract OEM Device Certificate Signing Request
	8.4.4. Linux: Prepare User’s OEM Root Certificate and OEM Device Certificate
	Overview
	User Instructions: Detail

	8.4.5. Board: Customize the Device Certificate and OEM Root Certificate
	User Instructions: Detail

	8.4.6. AWS Console: Configure User’s Account for AWS TLS Example
	1. Register the CA to the AWS IoT
	2. AWS Console: Create a Policy
	3. AWS Console: Create a Lambda Function

	8.4.7. Linux Development Environment: Configure and Build the TLS AWS Example Application
	User Instructions: Building and Installing the Application

	8.4.8. Board: Execute the TLS AWS Example Application
	1. AWS connection
	2. AWS Subscription and Publishing Events
	3. AWS shadow functionality
	4. AWS shadow interoperability

	9. CoreLockr(Secure Storage API
	9.1. Secure Storage Example
	9.1.1. Background
	Software and Data Requirements
	Building and Installing

	9.1.2. Executing the Example
	Create and Write Encrypted Files
	Decrypt Files and Print Data

	Appendix A: Supported Cryptographic Operations
	Appendix B: Policy
	Appendix C: Lambda Function

